Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Clin Auton Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630378

RESUMEN

PURPOSE: To investigate sex-related differences in the clinical presentation of multiple system atrophy (MSA) through a literature review and an analysis of a retrospective cohort. METHODS: The PubMed database was searched for articles including sex-related information in MSA. In a retrospective Innsbruck cohort, we investigated the baseline to last available follow-up clinical-demographic differences between men and women with MSA in a univariate fashion, followed by multivariable binary regression analysis. RESULTS: The literature search yielded 46 publications with sex-related information in MSA. Most studies found comparable survival rates between the sexes, while some recent reports suggested a potential survival benefit for women, possibly due to initial motor onset and overall less severe autonomic failure compared to men. The retrospective Innsbruck MSA cohort comprised 56 female and 60 male individuals with a comparable median follow-up of 27 months. At baseline, female sex was independently associated with depression (odds ratio [OR] 4.7; p = 0.007) and male sex with severe orthostatic hypotension (OR 5.5; p = 0.016). In addition, at last follow-up, female sex was associated with the intake of central nervous system-active drugs (OR 4.1; p = 0.029), whereas male sex was associated with the presence of supine hypertension (OR 3.0; p = 0.020) and the intake of antihypertensive medications (OR 8.7; p = 0.001). Male sex was also associated with initiation of antihypertensive medications over the observation period (OR 12.4; p = 0.004). CONCLUSION: The available literature and findings of the present study indicate sex-related differences in the clinical presentation of MSA and its evolution over time, highlighting the importance of considering sex in symptom exploration, therapeutic decision-making, and future clinical trial design.

2.
Mov Disord Clin Pract ; 10(12): 1738-1749, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094640

RESUMEN

Background: Individuals with multiple system atrophy (MSA) often complain about pain, nonetheless this remains a poorly investigated non-motor feature of MSA. Objectives: Here, we aimed at assessing the prevalence, characteristics, and risk factors for pain in individuals with MSA. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guidelines, we systematically screened the PubMED, Cochrane, and Web of Science databases for papers published in English until September 30, 2022, combining the following keywords: "pain," "multiple system atrophy," "MSA," "olivopontocerebellar atrophy," "OPCA," "striatonigral degeneration," "SND," "Shy Drager," and "atypical parkinsonism." Results: The search identified 700 records. Sixteen studies provided information on pain prevalence in cohorts of MSA individuals and were included in a qualitative assessment based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. Thirteen studies (11 cross-sectional, two longitudinal) scored ≥14 points on QUADAS assessment and were included in a quantitative analysis, pooling data from 1236 MSA individuals. The resulting pooled prevalence of pain in MSA was 67% (95% confidence intervals [CI] = 57%-75%), and significantly higher in individuals with MSA of parkinsonian rather than cerebellar type (76% [95% CI = 63%-87%] vs. 45% [95% CI = 33%-57%], P = 0.001). Pain assessment tools and collected information were highly heterogeneous across studies. Two studies reported pain treatment strategies and found that only every second person with MSA complaining about pain had received targeted treatment. Conclusions: We found that pain is a frequent, but still under-recognized and undertreated feature of MSA. Further research is needed to improve pain detection and treatment in MSA.

3.
Clin Auton Res ; 33(6): 777-790, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792127

RESUMEN

PURPOSE: To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe. METHODS: We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders. RESULTS: Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent (n = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% (n = 27/29) established e-learning models. Both the 2020 joint EAN-EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020-2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n = 16/41) maintained higher clinical caseloads during the first pandemic year. CONCLUSIONS: The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , COVID-19/epidemiología , Pandemias , Europa (Continente)/epidemiología , Encuestas y Cuestionarios
4.
Expert Opin Pharmacother ; 24(13): 1415-1425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37300418

RESUMEN

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is an emergent neurodegenerative tauopathy well characterized pathologically but with limited consensus about clinical criteria. The clinical features include cognitive, behavioral, and motor symptoms such as parkinsonism, gait, balance disorder, and bulbar impairment. Their recognition derives from retrospective studies in pathologically confirmed CTE patients. This is one of the main reasons for the lack of specific pharmacological studies targeting symptoms or pathologic pathways of this disease. AREAS COVERED: In this narrative review, we overview the possible symptomatic treatment options for CTE, based on pathological similarities with other neurodegenerative diseases that may share common pathological pathways with CTE. The PubMed database was screened for articles addressing the symptomatic treatment of CTE and Traumatic Encephalopathy Syndrome (TES). Additional references were retrieved by reference cross-check and retained if pertinent to the subject. The clinicaltrials.gov database was screened for ongoing trials on the treatment of CTE. EXPERT OPINION: The similarities with the other tauopathies allow us, in the absence of disease-specific evidence, to translate some knowledge from these neurodegenerative disorders to CTE's symptomatic treatment, but any conclusion should be drawn cautiously and a patient-tailored strategy should be always preferred balancing the risks and benefits of each treatment.


Asunto(s)
Encefalopatía Traumática Crónica , Demencia , Enfermedades Neurodegenerativas , Humanos , Encefalopatía Traumática Crónica/diagnóstico , Encefalopatía Traumática Crónica/etiología , Encefalopatía Traumática Crónica/patología , Estudios Retrospectivos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/etiología
5.
J Neurochem ; 163(1): 40-52, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35950445

RESUMEN

Converging translational and clinical research strongly indicates that altered immune and inflammatory homeostasis (neuroinflammation) plays a critical pathophysiological role in Alzheimer's disease (AD), across the clinical continuum. A dualistic role of neuroinflammation may account for a complex biological phenomenon, representing a potential pharmacological target. Emerging blood-based pathophysiological biomarkers, such as cytokines (Cyt) and interleukins (ILs), have been studied as indicators of neuroinflammation in AD. However, inconsistent results have been reported probably due to a lack of standardization of assays with methodological and analytical differences. We used machine-learning and a cross-validation-based statical workflow to explore and analyze the potential impact of key biological factors, such as age, sex, and apolipoprotein-E (APOE) genotype (the major genetic risk factor for late-onset AD) on Cyt. A set of Cyt was selected based on previous literature, and we investigated any potential association in a pooled cohort of cognitively healthy, mild cognitive impairment (MCI), and AD-like dementia patients. We also performed explorative analyses to extrapolate preliminary clinical insights. We found a robust sex effect on IL12 and an APOE-related difference in IL10, with the latter being also related to the presence of advanced cognitive decline. IL1ß was the variable most significantly associated with MCI-to-dementia conversion over a 2.5 year-clinical follow-up. Although preliminary, our data support further clinical research to understand whether plasma Cyt may represent reliable and noninvasive tools serving the investigation of neuroimmune and inflammatory dynamics in AD and to foster biomarker-guided pathway-based therapeutic approaches, within the precision medicine development framework.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores , Disfunción Cognitiva/complicaciones , Citocinas , Progresión de la Enfermedad , Humanos , Interleucina-10 , Interleucina-12
7.
J Parkinsons Dis ; 12(7): 2277-2281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35848039

RESUMEN

Multiple system atrophy (MSA) is a rare, rapidly progressive neurodegenerative disorder of the adulthood, characterized by autonomic failure, parkinsonian and cerebellar features in various combinations. Distinguishing MSA from common clinical look-alikes such as Parkinson's disease, other atypical parkinsonian disorders or alternative causes of sporadic adult-onset cerebellar ataxia may be difficult, especially at early disease stages. Nonetheless, some simple and cost-effective screening tools help detecting important red flags guiding towards a MSA diagnosis. Here we outline which clinical pearls and bedside tests may disclose autonomic dysfunction in multiple domains, enabling an early MSA diagnosis and, even more importantly, personalized treatment.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Adulto , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Enfermedades del Sistema Nervioso Autónomo/etiología , Cerebelo , Humanos , Atrofia de Múltiples Sistemas/complicaciones , Atrofia de Múltiples Sistemas/diagnóstico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico
8.
Neuroimage ; 260: 119454, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810938

RESUMEN

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.


Asunto(s)
Sobrecarga de Hierro , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Biomarcadores , Progresión de la Enfermedad , Humanos , Hierro , Sobrecarga de Hierro/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/patología
10.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35453843

RESUMEN

The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer's Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.

11.
Expert Rev Mol Diagn ; 22(4): 411-425, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35443850

RESUMEN

INTRODUCTION: α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED: We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION: α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.


Asunto(s)
Enfermedad de Alzheimer , Sinucleinopatías , alfa-Sinucleína , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Diagnóstico Diferencial , Humanos , alfa-Sinucleína/metabolismo
13.
Expert Rev Neurother ; 21(9): 949-967, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365867

RESUMEN

INTRODUCTION: The clinical validation and qualification of biomarkers reflecting the complex pathophysiology of neurodegenerative diseases (NDDs) is a fundamental challenge for current drug discovery and development and next-generation clinical practice. Novel ultrasensitive detection techniques and protein misfolding amplification assays hold the potential to optimize and accelerate this process. AREAS COVERED: Here we perform a PubMed-based state of the art review and perspective report on blood-based ultrasensitive detection techniques and protein misfolding amplification assays for biomarkers discovery and development in NDDs. EXPERT OPINION: Ultrasensitive assays represent innovative solutions for blood-based assessments during the entire Alzheimer's disease (AD) biological and clinical continuum, for contexts of use (COU) such as prediction, detection, early diagnosis, and prognosis of AD. Moreover, cerebrospinal fluid (CSF)-based misfolding amplification assays show encouraging performance in detecting α-synucleinopathies in prodromal or at-high-risk individuals and may serve as tools for patients' stratification by the presence of α-synuclein pathology. Further clinical research will help overcome current methodological limitations, also through exploring multiple accessible bodily matrices. Eventually, integrative longitudinal studies will support precise definitions for appropriate COU across NDDs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores , Diagnóstico Precoz , Humanos , Enfermedades Neurodegenerativas/diagnóstico , alfa-Sinucleína
15.
J Neural Transm (Vienna) ; 128(10): 1481-1494, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34319460

RESUMEN

Multiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger's substantial contribution.


Asunto(s)
Atrofia de Múltiples Sistemas , Austria , Humanos , Cuerpos de Inclusión , Neuropatología , alfa-Sinucleína
16.
Expert Rev Proteomics ; 18(1): 27-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33545008

RESUMEN

Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/análisis , Biomarcadores/análisis , Humanos
17.
J Pers Med ; 10(4)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187336

RESUMEN

A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aß peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.

18.
Expert Rev Proteomics ; 17(7-8): 543-559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33028119

RESUMEN

INTRODUCTION: The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED: Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION: CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Neurogranina/genética , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Biomarcadores/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/diagnóstico , Neurogranina/líquido cefalorraquídeo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteína 25 Asociada a Sinaptosomas/líquido cefalorraquídeo , Sinaptotagmina I/líquido cefalorraquídeo
19.
Neurology ; 95(21): e2854-e2865, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32938788

RESUMEN

OBJECTIVES: To assess the frequency of transient orthostatic hypotension (tOH) and its clinical impact in Parkinson disease (PD), we retrospectively studied 173 patients with PD and 173 age- and sex-matched controls with orthostatic intolerance, who underwent cardiovascular autonomic function testing under continuous noninvasive blood pressure (BP) monitoring. METHODS: We screened for tOH (systolic BP fall ≥20 mm Hg or diastolic ≥10 mm Hg resolving within the first minute upon standing) and classic OH (cOH, sustained systolic BP fall ≥20 mm Hg or diastolic ≥10 mm Hg within 3 minutes upon standing). In patients with PD, we reviewed the medical records of the 6 months preceding and following autonomic testing for history of falls, syncope, and orthostatic intolerance. RESULTS: tOH occurred in 24% of patients with PD and 21% of controls, cOH in 19% of patients with PD and in none of the controls, independently of any clinical-demographic or PD-specific characteristic. Forty percent of patients with PD had a history of falls, in 29% of cases due to syncope. Patients with PD with history of orthostatic intolerance and syncope had a more severe systolic BP fall and lower diastolic BP rise upon standing, most pronounced in the first 30-60 seconds. CONCLUSIONS: tOH is an age-dependent phenomenon, which is at least as common as cOH in PD. Transient BP falls when changing to the upright position may be overlooked with bedside BP measurements, but contribute to orthostatic intolerance and syncope in PD. Continuous noninvasive BP monitoring upon standing may help identify a modifiable risk factor for syncope-related falls in parkinsonian patients.


Asunto(s)
Accidentes por Caídas/prevención & control , Hipotensión Ortostática/complicaciones , Enfermedad de Parkinson/complicaciones , Síncope/complicaciones , Anciano , Sistema Nervioso Autónomo/fisiopatología , Determinación de la Presión Sanguínea/métodos , Femenino , Humanos , Hipotensión/complicaciones , Hipotensión Ortostática/fisiopatología , Masculino , Persona de Mediana Edad , Intolerancia Ortostática/complicaciones , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...