Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Handb Exp Pharmacol ; 279: 3-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592225

RESUMEN

In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVß1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.


Asunto(s)
Canalopatías , Enfermedades Musculares , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canalopatías/genética , Proteínas Adaptadoras Transductoras de Señales , Acoplamiento Excitación-Contracción/fisiología , Músculo Esquelético/fisiología , Enfermedades Musculares/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Señalización del Calcio
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077281

RESUMEN

The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α1-α2δ protein-protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.


Asunto(s)
Canales de Calcio , Neuronas , Canales de Calcio/metabolismo , Hipocampo/metabolismo , Neurogénesis , Neuronas/metabolismo , Sinapsis/metabolismo
3.
J Cell Physiol ; 237(11): 4197-4214, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36161458

RESUMEN

The skeletal muscle CaV 1.1 channel functions as the voltage-sensor of excitation-contraction (EC) coupling. Recently, the adaptor protein STAC3 was found to be essential for both CaV 1.1 functional expression and EC coupling. Interestingly, STAC proteins were also reported to inhibit calcium-dependent inactivation (CDI) of L-type calcium channels (LTCC), an important negative feedback mechanism in calcium signaling. The same could not be demonstrated for CaV 1.1, as STAC3 is required for its functional expression. However, upon strong membrane depolarization, CaV 1.1 conducts calcium currents characterized by very slow kinetics of activation and inactivation. Therefore, we hypothesized that the negligible inactivation observed in CaV 1.1 currents reflects the inhibitory effect of STAC3. Here, we inserted a triple mutation in the linker region of STAC3 (ETLAAA), as the analogous mutation abolished the inhibitory effect of STAC2 on CDI of CaV 1.3 currents. When coexpressed in CaV 1.1/STAC3 double knockout myotubes, the mutant STAC3-ETLAAA failed to colocalize with CaV 1.1 in the sarcoplasmic reticulum/membrane junctions. However, combined patch-clamp and calcium recording experiments revealed that STAC3-ETLAAA supports CaV 1.1 functional expression and EC coupling, although at a reduced extent compared to wild-type STAC3. Importantly, STAC3-ETLAAA coexpression dramatically accelerated the kinetics of activation and inactivation of CaV 1.1 currents, suggesting that STAC3 determines the slow CaV 1.1 currents kinetics. To examine if STAC3 specifically inhibits the CDI of CaV 1.1 currents, we performed patch-clamp recordings using calcium and barium as charge carriers in HEK cells. While CaV 1.1 displayed negligible CDI with STAC3, this did not increase in the presence of STAC3-ETLAAA. On the contrary, our data demonstrate that STAC3 specifically inhibits the voltage-dependent inactivation (VDI) of CaV 1.1 currents. Altogether, these results designate STAC3 as a crucial determinant for the slow activation kinetics of CaV 1.1 currents and implicate STAC proteins as modulators of both components of inactivation of LTCC.


Asunto(s)
Calcio , Acoplamiento Excitación-Contracción , Calcio/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Señalización del Calcio/fisiología , Cinética
4.
J Gen Physiol ; 154(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349630

RESUMEN

The skeletal muscle voltage-gated calcium channel (CaV1.1) primarily functions as a voltage sensor for excitation-contraction coupling. Conversely, its ion-conducting function is modulated by multiple mechanisms within the pore-forming α1S subunit and the auxiliary α2δ-1 and γ1 subunits. In particular, developmentally regulated alternative splicing of exon 29, which inserts 19 amino acids in the extracellular IVS3-S4 loop of CaV1.1a, greatly reduces the current density and shifts the voltage dependence of activation to positive potentials outside the physiological range. We generated new HEK293 cell lines stably expressing α2δ-1, ß3, and STAC3. When the adult (CaV1.1a) and embryonic (CaV1.1e) splice variants were expressed in these cells, the difference in the voltage dependence of activation observed in muscle cells was reproduced, but not the reduced current density of CaV1.1a. Only when we further coexpressed the γ1 subunit was the current density of CaV1.1a, but not that of CaV1.1e, reduced by >50%. In addition, γ1 caused a shift of the voltage dependence of inactivation to negative voltages in both variants. Thus, the current-reducing effect of γ1, unlike its effect on inactivation, is specifically dependent on the inclusion of exon 29 in CaV1.1a. Molecular structure modeling revealed several direct ionic interactions between residues in the IVS3-S4 loop and the γ1 subunit. However, substitution of these residues by alanine, individually or in combination, did not abolish the γ1-dependent reduction of current density, suggesting that structural rearrangements in CaV1.1a induced by inclusion of exon 29 may allosterically empower the γ1 subunit to exert its inhibitory action on CaV1.1 calcium currents.


Asunto(s)
Empalme Alternativo , Calcio , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción , Células HEK293 , Humanos
5.
Proc Natl Acad Sci U S A ; 119(10): e2120416119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238659

RESUMEN

SignificanceIon channels have evolved the ability to communicate with one another, either through protein-protein interactions, or indirectly via intermediate diffusible messenger molecules. In special cases, the channels are part of different membranes. In muscle tissue, the T-tubule membrane is in proximity to the sarcoplasmic reticulum, allowing communication between L-type calcium channels and ryanodine receptors. This process is critical for excitation-contraction coupling and requires auxiliary proteins like junctophilin (JPH). JPHs are targets for disease-associated mutations, most notably hypertrophic cardiomyopathy mutations in the JPH2 isoform. Here we provide high-resolution snapshots of JPH, both alone and in complex with a calcium channel peptide, and show how this interaction is targeted by cardiomyopathy mutations.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Hipertrófica/genética , Activación del Canal Iónico , Mutación , Isoformas de Proteínas/metabolismo , Canales de Calcio Tipo L/química , Cristalografía por Rayos X , Humanos , Conformación Proteica , Isoformas de Proteínas/química
6.
Biophys J ; 120(20): 4429-4441, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34506774

RESUMEN

The voltage-gated calcium channel CaV1.1 belongs to the family of pseudo-heterotetrameric cation channels, which are built of four structurally and functionally distinct voltage-sensing domains (VSDs) arranged around a common channel pore. Upon depolarization, positive gating charges in the S4 helices of each VSD are moved across the membrane electric field, thus generating the conformational change that prompts channel opening. This sliding helix mechanism is aided by the transient formation of ion-pair interactions with countercharges located in the S2 and S3 helices within the VSDs. Recently, we identified a domain-specific ion-pair partner of R1 and R2 in VSD IV of CaV1.1 that stabilizes the activated state of this VSD and regulates the voltage dependence of current activation in a splicing-dependent manner. Structure modeling of the entire CaV1.1 in a membrane environment now revealed the participation in this process of an additional putative ion-pair partner (E216) located outside VSD IV, in the pore domain of the first repeat (IS5). This interdomain interaction is specific for CaV1.1 and CaV1.2 L-type calcium channels. Moreover, in CaV1.1 it is sensitive to insertion of the 19 amino acid peptide encoded by exon 29. Whole-cell patch-clamp recordings in dysgenic myotubes reconstituted with wild-type or E216 mutants of GFP-CaV1.1e (lacking exon 29) showed that charge neutralization (E216Q) or removal of the side chain (E216A) significantly shifted the voltage dependence of activation (V1/2) to more positive potentials, suggesting that E216 stabilizes the activated state. Insertion of exon 29 in the GFP-CaV1.1a splice variant strongly reduced the ionic interactions with R1 and R2 and caused a substantial right shift of V1/2, whereas no further shift of V1/2 was observed on substitution of E216 with A or Q. Together with our previous findings, these results demonstrate that inter- and intradomain ion-pair interactions cooperate in the molecular mechanism regulating VSD function and channel gating in CaV1.1.


Asunto(s)
Canales de Calcio Tipo L , Activación del Canal Iónico , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cationes , Técnicas de Placa-Clamp
7.
Elife ; 102021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33783354

RESUMEN

Voltage-gated calcium channels control key functions of excitable cells, like synaptic transmission in neurons and the contraction of heart and skeletal muscles. To accomplish such diverse functions, different calcium channels activate at different voltages and with distinct kinetics. To identify the molecular mechanisms governing specific voltage sensing properties, we combined structure modeling, mutagenesis, and electrophysiology to analyze the structures, free energy, and transition kinetics of the activated and resting states of two functionally distinct voltage sensing domains (VSDs) of the eukaryotic calcium channel CaV1.1. Both VSDs displayed the typical features of the sliding helix model; however, they greatly differed in ion-pair formation of the outer gating charges. Specifically, stabilization of the activated state enhanced the voltage dependence of activation, while stabilization of resting states slowed the kinetics. This mechanism provides a mechanistic model explaining how specific ion-pair formation in separate VSDs can realize the characteristic gating properties of voltage-gated cation channels.


Communication in our body runs on electricity. Between the exterior and interior of every living cell, there is a difference in electrical charge, or voltage. Rapid changes in this so-called membrane potential activate vital biological processes, ranging from muscle contraction to communication between nerve cells. Ion channels are cellular structures that maintain membrane potential and help 'excitable' cells like nerve and muscle cells produce electrical impulses. They are specialized proteins that form highly specific conduction pores in the cell surface. When open, these channels let charged particles (such as calcium ions) through, rapidly altering the electrical potential between the inside and outside the cell. To ensure proper control over this process, most ion channels open in response to specific stimuli, which is known as 'gating'. For example, voltage-gated calcium channels contain charge-sensing domains that change shape and allow the channel to open once the membrane potential reaches a certain threshold. These channels play important roles in many tissues and, when mutated, can cause severe brain or muscle disease. Although the basic principle of voltage gating is well-known, the properties of individual voltage-gated calcium channels still vary. Different family members open at different voltage levels and at different speeds. Such fine-tuning is thought to be key to their diverse roles in various parts of the body, but the underlying mechanisms are still poorly understood. Here, Fernández-Quintero, El Ghaleb et al. set out to determine how this variation is achieved. The first step was to create a dynamic computer simulation showing the detailed structure of a mammalian voltage-gated calcium channel, called CaV1.1. The simulation was then used to predict the movements of the voltage sensing regions while the channel opened. The computer modelling experiments showed that although the voltage sensors looked superficially similar, they acted differently. The first of the four voltage sensors of the studied calcium channel controlled opening speed. This was driven by shifts in its configuration that caused oppositely charged parts of the protein to sequentially form and break molecular bonds; a process that takes time. In contrast, the fourth sensor, which set the voltage threshold at which the channel opened, did not form these sequential bonds and accordingly reacted fast. Experimental tests in muscle cells that had been engineered to produce channels with mutations in the sensors, confirmed these results. These findings shed new light on the molecular mechanisms that shape the activity of voltage-gated calcium channels. This knowledge will help us understand better how ion channels work, both in healthy tissue and in human disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Activación del Canal Iónico , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Línea Celular , Humanos , Cinética , Cadenas de Markov , Potenciales de la Membrana , Ratones , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Conejos , Relación Estructura-Actividad
8.
Brain ; 144(7): 2092-2106, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33704440

RESUMEN

T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here, we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy, the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analysed possible effects on Cav3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with Cav3.3-I860N showing the strongest and Cav3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in Cav3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the Cav3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the Cav3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the Cav3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type Cav3.3 to slow oscillations with Cav3.3-I860N and an intermediate firing mode with Cav3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Activación del Canal Iónico/genética , Trastornos del Neurodesarrollo/genética , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Niño , Simulación por Computador , Femenino , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Modelos Neurológicos , Mutación Missense , Neuronas/metabolismo , Linaje , Conformación Proteica
9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782113

RESUMEN

In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.


Asunto(s)
Canales de Calcio/metabolismo , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , Animales , Canales de Calcio/genética , Células Cultivadas , Hipocampo/citología , Ratones Noqueados , Terminales Presinápticos/ultraestructura , Isoformas de Proteínas/metabolismo
10.
Structure ; 28(8): 922-932.e5, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32492370

RESUMEN

STAC3 is a soluble protein essential for skeletal muscle excitation-contraction (EC) coupling. Through its tandem SH3 domains, it interacts with the cytosolic II-III loop of the skeletal muscle voltage-gated calcium channel. STAC3 is the target for a mutation (W284S) that causes Native American myopathy, but multiple other sequence variants have been reported. Here, we report a crystal structure of the human STAC3 tandem SH3 domains. We analyzed the effect of five disease-associated variants, spread over both SH3 domains, on their ability to bind to the CaV1.1 II-III loop and on muscle EC coupling. In addition to W284S, we find the F295L and K329N variants to affect both binding and EC coupling. The ability of the K329N variant, located in the second SH3 domain, to affect the interaction highlights the importance of both SH3 domains in association with CaV1.1. Our results suggest that multiple STAC3 variants may cause myopathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Canales de Calcio Tipo L/metabolismo , Fisura del Paladar/genética , Acoplamiento Excitación-Contracción , Hipertermia Maligna/genética , Miotonía Congénita/genética , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Canales de Calcio Tipo L/química , Línea Celular , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Conformación Proteica en Lámina beta , Dominios Homologos src
11.
PLoS Genet ; 16(3): e1008625, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176688

RESUMEN

P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and ß4 subunits. ß4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat ß4b cDNA. Heterologously expressed wild-type ß4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the ß4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, ß4b and ß4b-L125P augmented the calcium current amplitudes, however, ß4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of ß4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype ß4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of ß4b in cultured myotubes and hippocampal neurons. While binding of ß4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between ß4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of ß4b.


Asunto(s)
Canales de Calcio/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Subunidades de Proteína/genética , Animales , Calcio/metabolismo , Canales de Calcio Tipo N/genética , Células Cultivadas , Femenino , Regulación de la Expresión Génica/genética , Células HEK293 , Hipocampo/fisiología , Homocigoto , Humanos , Masculino , Ratones Endogámicos BALB C , Neuronas/metabolismo , Terminales Presinápticos/fisiología , Isoformas de Proteínas/genética , Ratas , Transmisión Sináptica/genética
12.
Channels (Austin) ; 13(1): 62-71, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30638110

RESUMEN

The voltage-gated calcium channel CaV1.1a primarily functions as voltage-sensor in skeletal muscle excitation-contraction (EC) coupling. In embryonic muscle the splice variant CaV1.1e, which lacks exon 29, additionally function as a genuine L-type calcium channel. Because previous work in most laboratories used a CaV1.1 expression plasmid containing a single amino acid substitution (R165K) of a critical gating charge in the first voltage-sensing domain (VSD), we corrected this substitution and analyzed its effects on the gating properties of the L-type calcium currents in dysgenic myotubes. Reverting K165 to R right-shifted the voltage-dependence of activation by ~12 mV in both CaV1.1 splice variants without changing their current amplitudes or kinetics. This demonstrates the exquisite sensitivity of the voltage-sensor function to changes in the specific amino acid side chains independent of their charge. Our results further indicate the cooperativity of VSDs I and IV in determining the voltage-sensitivity of CaV1.1 channel gating.


Asunto(s)
Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico , Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Humanos , Ratones , Modelos Moleculares , Conejos , Ratas , Pez Cebra
13.
J Neurosci ; 39(14): 2581-2605, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30683685

RESUMEN

Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.


Asunto(s)
Axones/metabolismo , Canales de Calcio/biosíntesis , Terminales Presinápticos/metabolismo , Receptores de GABA-A/metabolismo , Potenciales Sinápticos/fisiología , Animales , Axones/química , Encéfalo/citología , Encéfalo/fisiología , Canales de Calcio/análisis , Células Cultivadas , Técnicas de Cocultivo , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Terminales Presinápticos/química , Subunidades de Proteína/análisis , Subunidades de Proteína/biosíntesis , Receptores de GABA-A/análisis
14.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1101-1110, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30543836

RESUMEN

Excitation-contraction coupling is the signaling process by which action potentials control calcium release and consequently the force of muscle contraction. Until recently, three triad proteins were known to be essential for skeletal muscle EC coupling: the voltage-gated calcium channel CaV1.1 acting as voltage sensor, the SR calcium release channel RyR1 representing the only relevant calcium source, and the auxiliary CaV ß1a subunit. Whether CaV1.1 and RyR1 are directly coupled or whether their interaction is mediated by another triad protein is still unknown. The recent identification of the adaptor protein STAC3 as fourth essential component of skeletal muscle EC coupling prompted vigorous research to reveal its role in this signaling process. Accumulating evidence supports its possible involvement in linking CaV1.1 and RyR1 in skeletal muscle EC coupling, but also indicates a second, much broader role of STAC proteins in the regulation of calcium/calmodulin-dependent feedback regulation of L-type calcium channels.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Caveolina 1/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Humanos
15.
J Cell Physiol ; 233(12): 9045-9051, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30071129

RESUMEN

Excitation-contraction (EC) coupling in skeletal muscles operates through a physical interaction between the dihydropyridine receptor (DHPR), acting as a voltage sensor, and the ryanodine receptor (RyR1), acting as a calcium release channel. Recently, the adaptor protein SH3 and cysteine-rich containing protein 3 (STAC3) has been identified as a myopathy disease gene and as an additional essential EC coupling component. STAC3 interacts with DHPR sequences including the critical EC coupling domain and has been proposed to function in linking the DHPR and RyR1. However, we and others demonstrated that incorporation of recombinant STAC3 into skeletal muscle triads critically depends only on the DHPR but not the RyR1. On the contrary, here, we provide evidence that endogenous STAC3 incorporates into triads in the absence of the DHPR in myotubes and muscle fibers of dysgenic mice. This finding demonstrates that STAC3 interacts with additional triad proteins and is consistent with its proposed role in directly or indirectly linking the DHPR with the RyR1.


Asunto(s)
Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Proteínas del Tejido Nervioso/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Acoplamiento Excitación-Contracción/genética , Acoplamiento Excitación-Contracción/fisiología , Humanos , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Enfermedades Musculares/fisiopatología
16.
Channels (Austin) ; 12(1): 249-261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001160

RESUMEN

Voltage-dependent calcium channels (CaV) activate over a wide range of membrane potentials, and the voltage-dependence of activation of specific channel isoforms is exquisitely tuned to their diverse functions in excitable cells. Alternative splicing further adds to the stunning diversity of gating properties. For example, developmentally regulated insertion of an alternatively spliced exon 29 in the fourth voltage-sensing domain (VSD IV) of CaV1.1 right-shifts voltage-dependence of activation by 30 mV and decreases the current amplitude several-fold. Previously we demonstrated that this regulation of gating properties depends on interactions between positive gating charges (R1, R2) and a negative countercharge (D4) in VSD IV of CaV1.1. Here we investigated whether this molecular mechanism plays a similar role in the VSD IV of CaV1.3 and in VSDs II and IV of CaV1.2 by introducing charge-neutralizing mutations (D4N or E4Q) in the corresponding positions of CaV1.3 and in two splice variants of CaV1.2. In both channels the D4N (VSD IV) mutation resulted in a  Ì´5 mV right-shift of the voltage-dependence of activation and in a reduction of current density to about half of that in controls. However in CaV1.2 the effects were independent of alternative splicing, indicating that the two modulatory processes operate by distinct mechanisms. Together with our previous findings these results suggest that molecular interactions engaging D4 in VSD IV contribute to voltage-sensing in all examined CaV1 channels, however its striking role in regulating the gating properties by alternative splicing appears to be a unique property of the skeletal muscle CaV1.1 channel.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Activación del Canal Iónico , Animales , Canales de Calcio Tipo L/genética , Células Cultivadas , Activación del Canal Iónico/genética , Ratones
17.
Proc Natl Acad Sci U S A ; 115(6): 1376-1381, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363593

RESUMEN

The adaptor proteins STAC1, STAC2, and STAC3 represent a newly identified family of regulators of voltage-gated calcium channel (CaV) trafficking and function. The skeletal muscle isoform STAC3 is essential for excitation-contraction coupling and its mutation causes severe muscle disease. Recently, two distinct molecular domains in STAC3 were identified, necessary for its functional interaction with CaV1.1: the C1 domain, which recruits STAC proteins to the calcium channel complex in skeletal muscle triads, and the SH3-1 domain, involved in excitation-contraction coupling. These interaction sites are conserved in the three STAC proteins. However, the molecular domain in CaV1 channels interacting with the STAC C1 domain and the possible role of this interaction in neuronal CaV1 channels remained unknown. Using CaV1.2/2.1 chimeras expressed in dysgenic (CaV1.1-/-) myotubes, we identified the amino acids 1,641-1,668 in the C terminus of CaV1.2 as necessary for association of STAC proteins. This sequence contains the IQ domain and alanine mutagenesis revealed that the amino acids important for STAC association overlap with those making contacts with the C-lobe of calcium-calmodulin (Ca/CaM) and mediating calcium-dependent inactivation of CaV1.2. Indeed, patch-clamp analysis demonstrated that coexpression of either one of the three STAC proteins with CaV1.2 opposed calcium-dependent inactivation, although to different degrees, and that substitution of the CaV1.2 IQ domain with that of CaV2.1, which does not interact with STAC, abolished this effect. These results suggest that STAC proteins associate with the CaV1.2 C terminus at the IQ domain and thus inhibit calcium-dependent feedback regulation of CaV1.2 currents.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Calmodulina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Moscas Domésticas , Humanos , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Biol Chem ; 293(3): 1040-1053, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29180451

RESUMEN

L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Hipocampo/citología , Neuronas/citología , Neuronas/metabolismo , Animales , Electrofisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Fosforilación , Ratas , Ratas Sprague-Dawley
19.
Proc Natl Acad Sci U S A ; 114(45): E9520-E9528, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078335

RESUMEN

Excitation-contraction (EC) coupling in skeletal muscle requires functional and mechanical coupling between L-type voltage-gated calcium channels (CaV1.1) and the ryanodine receptor (RyR1). Recently, STAC3 was identified as an essential protein for EC coupling and is part of a group of three proteins that can bind and modulate L-type voltage-gated calcium channels. Here, we report crystal structures of tandem-SH3 domains of different STAC isoforms up to 1.2-Å resolution. These form a rigid interaction through a conserved interdomain interface. We identify the linker connecting transmembrane repeats II and III in two different CaV isoforms as a binding site for the SH3 domains and report a crystal structure of the complex with the STAC2 isoform. The interaction site includes the location for a disease variant in STAC3 that has been linked to Native American myopathy (NAM). Introducing the mutation does not cause misfolding of the SH3 domains, but abolishes the interaction. Disruption of the interaction via mutations in the II-III loop perturbs skeletal muscle EC coupling, but preserves the ability of STAC3 to slow down inactivation of CaV1.2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio Tipo L/metabolismo , Animales , Sitios de Unión/fisiología , Calcio/metabolismo , Señalización del Calcio/fisiología , Fisura del Paladar/metabolismo , Cristalografía por Rayos X/métodos , Acoplamiento Excitación-Contracción/fisiología , Humanos , Hipertermia Maligna/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Mutación/genética , Miotonía Congénita/metabolismo , Isoformas de Proteínas/metabolismo , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Xenopus laevis/metabolismo
20.
ACS Chem Neurosci ; 8(6): 1313-1326, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28278376

RESUMEN

For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and cytoplasmic ß-subunit (CaVß). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:CaVß interactions and reduce the entropic penalty associated with AID binding to CaVß. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the CaVα1:CaVß interaction that modulate CaV function in an CaVß isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based CaV modulator design.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/metabolismo , Humanos , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...