Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Birth Defects Res ; 116(5): e2345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716582

RESUMEN

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Asunto(s)
Fertilidad , Janus Quinasa 1 , Pirimidinas , Sulfonamidas , Femenino , Animales , Embarazo , Ratas , Fertilidad/efectos de los fármacos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Pirimidinas/farmacología , Sulfonamidas/farmacología , Ratas Sprague-Dawley , Implantación del Embrión/efectos de los fármacos , Inhibidores de las Cinasas Janus/farmacología , Índice de Embarazo
2.
Arch Toxicol ; 97(4): 947-961, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36795116

RESUMEN

Drug-induced testicular injury (DITI) is one of the often-observed and challenging safety issues seen during drug development. Semen analysis and circulating hormones currently utilized have significant gaps in their ability to detect testicular damage accurately. In addition, no biomarkers enable a mechanistic understanding of the damage to the different regions of the testis, such as seminiferous tubules, Sertoli, and Leydig cells. MicroRNAs (miRNAs) are a class of non-coding RNAs that modulate gene expression post-transcriptionally and have been indicated to regulate a wide range of biological pathways. Circulating miRNAs can be measured in the body fluids due to tissue-specific cell injury/damage or toxicant exposure. Therefore, these circulating miRNAs have become attractive and promising non-invasive biomarkers for assessing drug-induced testicular injury, with several reports on their use as safety biomarkers for monitoring testicular damage in preclinical species. Leveraging emerging tools such as 'organs-on-chips' that can emulate the human organ's physiological environment and function is starting to enable biomarker discovery, validation, and clinical translation for regulatory qualification and implementation in drug development.


Asunto(s)
MicroARN Circulante , MicroARNs , Masculino , Humanos , Testículo/metabolismo , MicroARN Circulante/metabolismo , MicroARNs/genética , Biomarcadores/metabolismo , Células Intersticiales del Testículo/metabolismo
3.
J Med Chem ; 66(5): 3195-3211, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36802610

RESUMEN

The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.


Asunto(s)
Apetito , Receptor de Melanocortina Tipo 4 , Ratas , Humanos , Animales , Caquexia/tratamiento farmacológico , Anorexia/tratamiento farmacológico , Conformación Molecular
4.
Birth Defects Res ; 115(3): 348-356, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367445

RESUMEN

Achondroplasia is an autosomal disorder caused by point mutation in the gene encoding fibroblast growth factor receptor 3 (FGFR3) and resulting in gain of function. Recifercept is a potential disease modifying treatment for achondroplasia and functions as a decoy protein that competes for ligands of the mutated FGFR3. Recifercept is intended to restore normal bone growth by preventing the mutated FGFR3 from negative inhibitory signaling in pediatric patients with achondroplasia. Here we evaluated the potential effects of twice weekly administration of recifercept to juvenile cynomolgus monkeys (approximately 3-months of age at the initiation of dosing) for 6-months. No adverse effects were noted in this study, identifying the high dose as the no-observed-adverse-effect-level and supporting the use of recifercept in pediatric patients from birth. Considering that juvenile toxicity studies in nonhuman primates are not frequently conducted, and when they are conducted they typically utilize animals ≥9 months of age, this study demonstrates the feasibility of executing a juvenile toxicity study in very young monkeys prior to weaning.


Asunto(s)
Acondroplasia , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Animales , Humanos , Niño , Lactante , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/farmacología , Macaca fascicularis/metabolismo , Acondroplasia/tratamiento farmacológico , Acondroplasia/genética , Acondroplasia/metabolismo , Desarrollo Óseo , Huesos/metabolismo
5.
Toxicol Sci ; 189(2): 225-236, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35866640

RESUMEN

Ervogastat (PF-06865571) is a small molecule diacylglycerol acyltransferase 2 (DGAT2) inhibitor being developed for the oral treatment of nonalcoholic steatohepatitis (NASH) with liver fibrosis. DGAT2 is a key enzyme in triglyceride synthesis in tissues and in regulating energy metabolism. Fertility and developmental toxicity studies with ervogastat were conducted in female rats and rabbits. There were no effects on female rat fertility or rabbit embryo-fetal development. Administration of ervogastat to pregnant rats during organogenesis reduced fetal weight and caused higher incidences of bent bones in fetuses that were shown to resolve by postnatal day 28 and were therefore considered to be transient variations secondary to developmental delay. Extended dosing in rats through the end of gestation and lactation (pre- and post-natal development study) caused impaired skin development, reduced offspring viability, and growth retardation. The spectrum of developmental effects in rats is consistent with the intended pharmacology (altered triglyceride metabolism) and the transient nature of the skeletal findings, along with the late gestational window of sensitivity for the effects on skin barrier development, reduce the concern for potential adverse developmental effects following unintended early gestational exposure to ervogastat in humans where treatment can be discontinued once pregnancy is determined.


Asunto(s)
Diacilglicerol O-Acetiltransferasa , Reproducción , Animales , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/farmacología , Femenino , Fertilidad , Embarazo , Conejos , Ratas , Ratas Sprague-Dawley , Triglicéridos
6.
Dis Model Mech ; 15(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35466995

RESUMEN

Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.


Asunto(s)
Displasia Broncopulmonar , Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Displasia Broncopulmonar/tratamiento farmacológico , Desarrollo de Medicamentos , Enterocolitis Necrotizante/tratamiento farmacológico , Humanos , Recién Nacido , Enfermedades del Recién Nacido/tratamiento farmacológico
7.
Reprod Toxicol ; 103: 28-35, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34058573

RESUMEN

BNT162b2 is a vaccine developed to prevent coronavirus disease 2019 (COVID-19). BNT162b2 is a lipid nanoparticle formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein locked in its prefusion conformation. A developmental and reproductive toxicity study was conducted in rats according to international regulatory guidelines. The full human BNT162b2 dose of 30 µg mRNA/dose (>300 times the human dose on a mg/kg basis) was administered intramuscularly to 44 female rats 21 and 14 days prior to mating and on gestation days 9 and 20. Half of the rats were subject to cesarean section and full fetal examination at the end of gestation, and the other half were allowed to deliver and were monitored to the end of lactation. A robust neutralizing antibody response was confirmed prior to mating and at the end of gestation and lactation. The presence of neutralizing antibodies was also confirmed in fetuses and offspring. Nonadverse effects, related to the local injection site reaction, were noted in dams as expected from other animal studies and consistent with observations in humans. There were no effects of BNT162b2 on female mating performance, fertility, or any ovarian or uterine parameters nor on embryo-fetal or postnatal survival, growth, physical development or neurofunctional development in the offspring through the end of lactation. Together with the safety profile in nonpregnant people, this ICH-compliant nonclinical safety data supports study of BNT162b2 in women of childbearing potential and pregnant and lactating women.


Asunto(s)
Vacunas contra la COVID-19/toxicidad , Fertilidad , Desarrollo Fetal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacuna BNT162 , Vacunas contra la COVID-19/farmacología , Cesárea , Femenino , Lactancia , Embarazo , Ratas , Ratas Wistar
8.
Reprod Toxicol ; 99: 138-143, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065206

RESUMEN

Traditionally, understanding potential developmental toxicity from pharmaceutical exposures has been based on the results of ICH guideline studies in two species. However, support is growing for the use of weight of evidence approaches when communicating the risk of developmental toxicity, where the intended pharmacologic mode of action affects fundamental pathways in developmental biology or phenotypic data from genetically modified animals may increasingly be included in the overall assessment. Since some concern surrounds the use of data from knockout (KO) mice to accurately predict the risk for pharmaceutical modulation of a target, a deeper understanding of the relevance and predictivity of adverse developmental effects in KO mice for pharmacological target modulation is needed. To this end, we compared the results of embryo-fetal development (EFD) studies for 86 drugs approved by the FDA from 2017 to 2019 that also had KO mouse data available in the public domain. These comparisons demonstrate that data from KO mouse models are overall highly predictive of malformations or embryo-fetal lethality (MEFL) from EFD studies, but less so of a negative outcome in EFD studies. This information supports the use of embryo-fetal toxicity data in KO models as part of weight of evidence approaches in the communication of developmental toxicity risk of pharmaceutical compounds.


Asunto(s)
Anomalías Inducidas por Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Modelos Animales , Teratógenos/toxicidad , Animales , Embrión de Mamíferos/efectos de los fármacos , Muerte Fetal/etiología , Ratones Noqueados
9.
Toxicol Sci ; 179(2): 183-194, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33247737

RESUMEN

Acetyl-CoA carboxylase (ACC) is an enzyme within the de novo lipogenesis (DNL) pathway and plays a role in regulating lipid metabolism. Pharmacologic ACC inhibition has been an area of interest for multiple potential indications including oncology, acne vulgaris, metabolic diseases such as type 2 diabetes mellitus, and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. A critical role for ACC in de novo synthesis of long-chain fatty acids during fetal development has been demonstrated in studies in mice lacking Acc1, where the absence of Acc1 results in early embryonic lethality. Following positive predictions of developmental toxicity in the alternative in vitro assays (positive in murine embryonic stem cell [mESC] assay and rat whole embryo culture, but negative in zebrafish), developmental toxicity (growth retardation and dysmorphogenesis associated with disrupted midline fusion) was observed with the oral administration of the dual ACC1 and 2 inhibitors, PF-05175157, in Sprague Dawley rats and New Zealand White rabbits. The results of these studies are presented here to make comparisons across the assays, as well as mechanistic insights from the mESC assay demonstrating high ACC expression in the mESC and that ACC-induced developmental toxicity can be rescued with palmitic acid providing supportive evidence for DNL pathway inhibition as the underlying mechanism. Ultimately, while the battery of alternative approaches and weight-of-evidence case were useful for hazard identification, the embryo-fetal development studies were necessary to inform the risk assessment on the adverse fetal response, as malformations and/or embryo-fetal lethality were limited to doses that caused near-complete inhibition of DNL.


Asunto(s)
Acetil-CoA Carboxilasa , Diabetes Mellitus Tipo 2 , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Lipogénesis , Ratones , Conejos , Ratas , Ratas Sprague-Dawley , Pez Cebra/metabolismo
10.
Reprod Toxicol ; 96: 11-16, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32522587

RESUMEN

Traditionally, understanding potential developmental toxicity from pharmaceutical exposures has been based on the results of ICH guideline studies in two species. However, support is growing for the use of weight of evidence approaches when communicating the risk of developmental toxicity, where the intended pharmacologic mode of action affects fundamental pathways in developmental biology or phenotypic data from genetically modified animals may increasingly be included in the overall assessment. Since some concern surrounds the use of data from knockout (KO) mice to accurately predict the risk for pharmaceutical modulation of a target, a deeper understanding of the relevance and predictivity of adverse developmental effects in KO mice for pharmacological target modulation is needed. To this end, we compared the results of embryo-fetal development (EFD) studies for 86 drugs approved by the FDA from 2017 to 2019 that also had KO mouse data available in the public domain. These comparisons demonstrate that data from KO mouse models are overall highly predictive of malformations or embryo-fetal lethality (MEFL) from EFD studies, but less so of a negative outcome in EFD studies. This information supports the use of embryo-fetal toxicity data in KO models as part of weight of evidence approaches in the communication of developmental toxicity risk of pharmaceutical compounds.


Asunto(s)
Anomalías Inducidas por Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pérdida del Embrión , Muerte Fetal , Modelos Animales , Animales , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Ratones Noqueados
11.
Regul Toxicol Pharmacol ; 73(2): 562-70, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26382609

RESUMEN

Bococizumab is a humanized monoclonal IgG2Δa antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9) for the treatment of hyperlipidemia. The evaluation of potential effects on embryo-fetal development was conducted in the rat. In a pharmacokinetic/pharmacodynamic study bococizumab was administered intravenously to pregnant Sprague-Dawley (SD) rats (n = 8/group) at 0, 10, 30, and 100 mg/kg during organogenesis. Maternal and fetal bococizumab, total cholesterol and HDL concentrations were determined. Bococizumab was well tolerated and there were no effects on ovarian or uterine parameters. Maternal and fetal bococizumab exposure increased with increasing dose, with a corresponding dose-dependent decrease in fetal cholesterol levels. Maternal cholesterol levels were decreased significantly, with reductions that were of a similar magnitude regardless of dose. In the definitive embryo-fetal development study bococizumab was administered to pregnant SD rats (n = 20/group) at 0, 10, 30, and 100 mg/kg and no adverse maternal or developmental effects were observed up to 100 mg/kg. These studies have provided an appropriate and relevant safety assessment of bococizumab in pregnant rats to inform human risk assessment, demonstrating no adverse effects on embryo-fetal development at magnitudes greater than anticipated clinical exposure and in the presence of maximal reductions in maternal cholesterol and dose-dependent reductions in fetal cholesterol.


Asunto(s)
Anticuerpos Antiidiotipos/sangre , Anticuerpos Monoclonales Humanizados/administración & dosificación , Colesterol/sangre , Desarrollo Fetal/fisiología , Intercambio Materno-Fetal/fisiología , Serina Endopeptidasas/sangre , Animales , Anticuerpos Monoclonales Humanizados/toxicidad , Relación Dosis-Respuesta a Droga , Femenino , Desarrollo Fetal/efectos de los fármacos , Intercambio Materno-Fetal/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Proproteína Convertasa 9 , Ratas , Ratas Sprague-Dawley
12.
Drug Metab Dispos ; 43(6): 829-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25788542

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.


Asunto(s)
Acetaminofén/farmacocinética , Analgésicos no Narcóticos/farmacocinética , Hígado/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Arriba , Acetaminofén/análogos & derivados , Acetaminofén/sangre , Acetaminofén/orina , Adolescente , Analgésicos no Narcóticos/sangre , Analgésicos no Narcóticos/orina , Canalículos Biliares/metabolismo , Canalículos Biliares/patología , Biotransformación , Niño , Estudios de Cohortes , Hígado Graso/sangre , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/orina , Femenino , Humanos , Hígado/patología , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/orina , Proyectos Piloto , Transporte de Proteínas
13.
Reprod Toxicol ; 52: 7-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25678300

RESUMEN

Testicular degeneration was observed in exploratory toxicity studies in Wistar rats treated with several mGluR5 negative allosteric modulators. To determine if these testis effects were influenced by animal age, these compounds were administered to male Wistar rats of different ages (8, 10, and 12 weeks old) for 2 weeks followed by evaluation of male reproductive organ weights, testis histopathology, and inhibin B levels. Overall, seminiferous tubule degeneration was observed in 2/15, 5/15, and 0/15 compound treated rats from the 8, 10, and 12 week old cohorts and inhibin B was decreased in 8 and 10 week old animals, but not in 12 week old rats, suggesting that there is an age-related component to this testis toxicity. The gene expression profiles of drug transporters in the testis of rats aged PND 38 through PND 91 were very similar, indicating that immaturity of these transporters is an unlikely factor contributing to the age-related toxicity.


Asunto(s)
Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Testículo/efectos de los fármacos , Envejecimiento , Regulación Alostérica/efectos de los fármacos , Animales , Inhibinas/sangre , Masculino , Ratas , Ratas Wistar , Maduración Sexual , Testículo/crecimiento & desarrollo , Testículo/patología
14.
Toxicology ; 325: 85-95, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25193093

RESUMEN

Flavin-containing monooxygenase-3 (FMO3) catalyzes metabolic reactions similar to cytochrome P450 monooxygenase, however, most metabolites of FMO3 are considered non-toxic. Recent findings in our laboratory demonstrated Fmo3 gene induction following toxic acetaminophen (APAP) treatment in mice. The goal of this study was to evaluate Fmo3 gene expression in other diverse mouse models of hepatic oxidative stress and injury. Fmo3 gene regulation by Nrf2 was also investigated using Nrf2 knockout (Nrf2 KO) mice. In our studies, male C57BL/6J mice were treated with toxic doses of hepatotoxicants or underwent bile duct ligation (BDL, 10 days). Hepatotoxicants included APAP (400 mg/kg, 24-72 h), alpha-naphthyl isothiocyanate (ANIT; 50 mg/kg, 2-48 h), carbon tetrachloride (CCl4; 10 or 30 µL/kg, 24 and 48 h) and allyl alcohol (AlOH; 30 or 60 mg/kg, 6 and 24 h). Because oxidative stress activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2), additional studies investigated Fmo3 gene regulation by Nrf2 using Nrf2 knockout (Nrf2 KO) mice. At appropriate time-points, blood and liver samples were collected for assessment of plasma alanine aminotransferase (ALT) activity, plasma and hepatic bile acid levels, as well as liver Fmo3 mRNA and protein expression. Fmo3 mRNA expression increased significantly by 43-fold at 12 h after ANIT treatment, and this increase translates to a 4-fold change in protein levels. BDL also increased Fmo3 mRNA expression by 1899-fold, but with no change in protein levels. Treatment of mice with CCl4 decreased liver Fmo3 gene expression, while no change in expression was detected with AlOH treatment. Nrf2 KO mice are more susceptible to APAP (400mg/kg, 72 h) treatment compared to their wild-type (WT) counterparts, which is evidenced by greater plasma ALT activity. The Fmo3 mRNA and protein expression increased in Nrf2 KO mice after APAP treatment. Collectively, not all hepatotoxicants that produce oxidative stress alter Fmo3 gene expression. Along with APAP, toxic ANIT treatment in mice markedly increased Fmo3 gene expression. While BDL increased the Fmo3 mRNA expression, the protein level did not change. The discrepancy with Fmo3 induction in cholestatic models, ANIT and BDL, is not entirely clear. Results from Nrf2 KO mice with APAP suggest that the transcriptional regulation of Fmo3 during liver injury may not involve Nrf2.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Colestasis/enzimología , Hígado/enzimología , Estrés Oxidativo , Oxigenasas/metabolismo , Alanina Transaminasa/sangre , Animales , Ácidos y Sales Biliares/sangre , Conductos Biliares/cirugía , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/sangre , Colestasis/genética , Colestasis/patología , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Ligadura , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Oxigenasas/genética , ARN Mensajero/metabolismo , Factores de Tiempo
15.
Nucleic Acid Ther ; 24(5): 313-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25137397

RESUMEN

This white paper summarizes the current consensus of the Reproductive Subcommittee of the Oligonucleotide Safety Working Group on strategies to assess potential reproductive and/or developmental toxicities of therapeutic oligonucleotides (ONs). The unique product characteristics of ONs require considerations when planning developmental and reproductive toxicology studies, including (a) chemical characteristics, (b) assessment of intended and unintended mechanism of action, and (c) the optimal exposure, including dosing regimen. Because experience across the various classes of ONs as defined by their chemical backbone is relatively limited, best practices cannot be defined. Rather, points to consider are provided to help in the design of science-based reproductive safety evaluation programs based upon product attributes.


Asunto(s)
Aptitud Genética/efectos de los fármacos , Guías como Asunto , Oligonucleótidos/farmacocinética , Reproducción/efectos de los fármacos , Animales , Biomarcadores Farmacológicos/análisis , Vías de Administración de Medicamentos , Esquema de Medicación , Cálculo de Dosificación de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Modelos Animales , Oligonucleótidos/administración & dosificación , Oligonucleótidos/toxicidad
16.
Birth Defects Res B Dev Reprod Toxicol ; 101(4): 325-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25044418

RESUMEN

Treatment-induced epididymal inflammation and granuloma formation is only an occasional problem in preclinical drug development, but it can effectively terminate the development of that candidate molecule. Screening for backup molecules without that toxicity must be performed in animals (generally rats) that requires at least 2 to 3 weeks of in vivo exposure, a great deal of specially synthesized candidate compound, and histologic examination of the target tissues. We instead hypothesized that these treatments induced proinflammatory gene expression, and so used mixed-cell cultures from the rat epididymal tubule to monitor the induction of proinflammatory cytokines. Cells were exposed for 24 hr and then cytotoxicity was evaluated with the MTS assay and mRNA levels of Interleukin-6 (IL-6) and growth-related oncogene (GRO) were measured. We found that compounds that were more toxic in vivo stimulated a greater induction of IL-6 and GRO mRNA levels in vitro. By relating effective concentrations in vitro with the predicted C(eff), we could rank compounds by their propensity to induce inflammation in rats in vivo. This method allowed the identification of several compounds with very low inflammatory induction in vitro. When tested in rats, the compounds produced small degrees of inflammation at an acceptable margin (approximately 20×), and have progressed into further development.


Asunto(s)
Epidídimo/efectos de los fármacos , Epidídimo/patología , Epididimitis/inducido químicamente , Epididimitis/patología , Animales , Células Cultivadas , Quimiocina CXCL1/genética , Epidídimo/inmunología , Epididimitis/inmunología , Granuloma/inducido químicamente , Granuloma/patología , Interleucina-6/genética , Masculino , Mitocondrias/metabolismo , Cultivo Primario de Células , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley
17.
Toxicol Appl Pharmacol ; 274(1): 156-67, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24126418

RESUMEN

Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regulación de la Expresión Génica/fisiología , Modelos Animales , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Expert Opin Drug Metab Toxicol ; 9(11): 1391-408, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23961847

RESUMEN

INTRODUCTION: There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. AREAS COVERED: This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled 'Translational Biomarkers in Toxicology.' The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. EXPERT OPINION: There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process.


Asunto(s)
Biomarcadores/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Enfermedades Testiculares/inducido químicamente , Enfermedades Testiculares/diagnóstico , Testículo/efectos de los fármacos , Testículo/patología
19.
ALTEX ; 30(3): 353-77, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861079

RESUMEN

To address the pressing need for better in vitro testicular toxicity models, a workshop sponsored by the International Life Sciences Institute (ILSI), the Health and Environmental Science Institute (HESI), and the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), was held at the Mt. Washington Conference Center in Baltimore, MD, USA on October 26-27, 2011. At this workshop, experts in testis physiology, toxicology, and tissue engineering discussed approaches for creating improved in vitro environments that would be more conducive to maintaining spermatogenesis and steroidogenesis and could provide more predictive models for testicular toxicity testing. This workshop report is intended to provide scientists with a broad overview of relevant testicular toxicity literature and to suggest opportunities where bioengineering principles and techniques could be used to build improved in vitro testicular models for safety evaluation. Tissue engineering techniques could, conceivably, be immediately implemented to improve existing models. However, it is likely that in vitro testis models that use single or multiple cell types will be needed to address such endpoints as accurate prediction of chemically induced testicular toxicity in humans, elucidation of mechanisms of toxicity, and identification of possible biomarkers of testicular toxicity.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Ambientales/toxicidad , Testículo/efectos de los fármacos , Alternativas a las Pruebas en Animales , Animales , Biomarcadores , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Masculino , Modelos Biológicos , Valor Predictivo de las Pruebas , Testículo/citología , Pruebas de Toxicidad/métodos
20.
Reprod Toxicol ; 38: 16-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23434729

RESUMEN

Given the increasing use of Wistar Han (WH) rats in regulatory toxicology studies, these studies were performed to characterize the onset of sexual maturation in maturing WH rats as compared to Sprague-Dawley (SD) rats. Beginning on postnatal day (PND) 38 through PND 91 groups (n=8) of untreated WH rats were evaluated for maturation of the male reproductive system. Testicular spermatid head counts increased beginning on PND 42 until PND 70. Sperm were detected in the caput, corpus, and cauda epididymis on PND 45, 49, and 49, respectively, and counts increased through PND 91. Sperm motility was at adult levels by PND 63. The morphology of the testis/epididymis of all animals at day 70 or older was consistent with qualitative sexual maturity. Based on these endpoints, WH rats were determined to be sexually mature at PND 70, and many of these endpoints evaluated in SD rats exhibited nearly identical trends.


Asunto(s)
Maduración Sexual , Animales , Epidídimo/anatomía & histología , Masculino , Tamaño de los Órganos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Recuento de Espermatozoides , Testículo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...