Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micron ; 120: 17-24, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30759416

RESUMEN

The study of fossil feathers has been revitalized in the last few decades and has contributed significantly to paleontological studies of dinosaurs and birds. Specific morphological and physicochemical characteristics of the microscale structures of feathers and the protein keratin are key targets when preserved during the fossilization process. Keratin is a fibrous protein that composes some hard tissues such as hair, nails and feathers. It is part of the so called intermediate filaments inside keratinocyte cells and is rich in sulfur containing amino acid cysteine. To date, different microscopy and analytical methods have been used for the analysis and detailed characterization and classification of feathers. However, in this work we showed that analytical optical and electron microscopies can be quick and precise methods with minimal effects on the sample during analysis. This association of different approaches on the same sample results in correlative data albeit in different length scales. Intracellular bodies called melanosomes originally present in melanocyte cells were identified with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), and had well-defined orientation and a mean aspect ratio comparable to melanosomes extant in dark feathers. The detection of sulphur in melanosomes via Energy Dispersive Spectroscopy both in SEM and TEM shows that, along the fossilization process, sulphur from the degraded keratin matrix could have been trapped inside the melanosomes. Chemical groups that make up keratin and melanin in the fossil sample were detected via FT-IR Spectroscopy and Confocal Laser Scanning Microscopy (CLSM). The use of combined analytical microscopy techniques can contribute significantly to the study of fossils generating precise results with minimum damage to the original sample.


Asunto(s)
Plumas/ultraestructura , Fósiles/ultraestructura , Melanosomas/química , Azufre/análisis , Animales , Queratinas/análisis , Melaninas/análisis , Melanocitos/citología , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
2.
J Phycol ; 53(3): 642-651, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28258584

RESUMEN

Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs.


Asunto(s)
Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Rhodophyta/fisiología , Brasil , Pared Celular/fisiología , Pared Celular/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
3.
Toxicol In Vitro ; 29(5): 819-27, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25790728

RESUMEN

Gold nanoparticles (AuNP) have been widely used for many applications, including as biological carriers. A better understanding concerning AuNP safety on muscle cells is crucial, since it could be a potential tool in the nanomedicine field. Here, we describe the impact of polyethylene glycol-coated gold nanoparticles (PEG-AuNP) interaction with differentiated skeletal muscle C2C12 cells on cell viability, mitochondria function, cell signaling related to survival, cytokine levels and susceptibility to apoptosis. Intracellular localization of 4.5 nm PEG-AuNP diameter size was evidenced by STEM-in-SEM in myotube cells. Methods for cytotoxicity analysis showed that PEG-AuNP did not affect cell viability, but intracellular ATP levels and mitochondrial membrane potential increased. Phosphorylation of ERK was not altered but p-AKT levels reduced (p<0.01). Pre-treatment of cells with PEG-AuNP followed by staurosporine induction increased the caspases-3/7 activity. Indeed, cytokines analysis revealed a sharp increase of IFN-γ and TGF-ß1 levels after PEG-AuNP treatment, suggesting that inflammatory and fibrotic phenotypes process were activated. These data demonstrate that PEG-AuNP affect the myotube physiology leading these cells to be more susceptible to death stimuli in the presence of staurosporine. Altogether, these results present evidence that PEG-AuNP affect the susceptibility to apoptosis of muscle cells, contributing to development of safer strategies for intramuscular delivery.


Asunto(s)
Oro/toxicidad , Nanopartículas del Metal/toxicidad , Fibras Musculares Esqueléticas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Oro/química , Interferón gamma/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas del Metal/química , Ratones , Fibras Musculares Esqueléticas/metabolismo , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...