Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Neuropeptides ; 103: 102390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984248

RESUMEN

Venom-derived peptides are important sources for the development of new therapeutic molecules, especially due to their broad pharmacological activity. Previously, our research group identified a novel natural peptide, named fraternine, with promising effects for the treatment of Parkinson's disease. In the present paper, we synthesized three peptides bioinspired in fraternine: fra-10, fra-14, and fra-24. They were tested in the 6-OHDA-induced model of parkinsonism, quantifying motor coordination, levels of TH+ neurons in the substantia nigra pars compacta (SN), and inflammation mediators TNF-α, IL-6, and IL-1ß in the cortex. Peptides fra-14 and fra-10 improved the motor coordination in relation to 6-OHDA lesioned animals. However, most of the peptides were toxic in the doses applied. All three peptides reduced the intensity of the lesion induced rotations in the apomorphine test. Fra-24 higher dose increased the number of TH+ neurons in SN and reduced the concentration of TNF-α in the cortex of 6-OHDA lesioned mice. Overall, only the peptide fra-24 presented a neuroprotection effect on dopaminergic neurons of SN and a reduction of cytokine TNF-α levels, making it worthy of consideration for the treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Oxidopamina , Factor de Necrosis Tumoral alfa , Sustancia Negra , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad
2.
Toxins (Basel) ; 12(9)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867207

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative condition that affects the Central Nervous System (CNS). Insect venoms show high molecular variability and selectivity in the CNS of mammals and present potential for the development of new drugs for the treatment of PD. In this study, we isolated and identified a component of the venom of the social wasp Parachartergus fraternus and evaluated its neuroprotective activity in the murine model of PD. For this purpose, the venom was filtered and separated through HPLC; fractions were analyzed through mass spectrometry and the active fraction was identified as a novel peptide, called Fraternine. We performed two behavioral tests to evaluate motor discoordination, as well as an apomorphine-induced rotation test. We also conducted an immunohistochemical assay to assess protection in TH+ neurons in the Substantia Nigra (SN) region. Group treated with 10 µg/animal of Fraternine remained longer in the rotarod compared to the lesioned group. In the apomorphine test, Fraternine decreased the number of rotations between treatments. This dose also inhibited dopaminergic neuronal loss, as indicated by immunohistochemical analysis. This study identified a novel peptide able to prevent the death of dopaminergic neurons of the SN and recover motor deficit in a 6-OHDA-induced murine model of PD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Péptidos/farmacología , Sustancia Negra/efectos de los fármacos , Venenos de Avispas/química , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Masculino , Ratones , Degeneración Nerviosa , Fármacos Neuroprotectores/aislamiento & purificación , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Péptidos/aislamiento & purificación , Prueba de Desempeño de Rotación con Aceleración Constante , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología , Avispas
3.
Peptides ; 95: 84-93, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28754346

RESUMEN

Chatergellus communis is a wasp species endemic to the neotropical region and its venom constituents have never been described. In this study, two peptides from C. communis venom, denominated Communis and Communis-AAAA, were chemically and biologically characterized. In respect to the chemical characterization, the following amino acid sequences and molecular masses were identified: Communis: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-COOH (1340.9Da) Communis-AAAA: Ile-Asn-Trp-Lys-Ala-Ile-Leu-Gly-Lys-Ile-Gly-Lys-Ala-Ala-Ala-Ala-Val-Xle-NH2 (1836.3Da). Furthermore, their biological effects were compared, accounting for the differences in structural characteristics between the two peptides. To this end, three biological assays were performed in order to evaluate the hyperalgesic, edematogenic and hemolytic effects of these molecules. Communis-AAAA, unlike Communis, showed a potent hemolytic activity with EC50=142.6µM. Moreover, the highest dose of Communis-AAAA (2nmol/animal) induced hyperalgesia in mice. On the other hand, Communis (10nmol/animal) was able to induce edema but did not present hemolytic or hyperalgesic activity. Although both peptides have similarities in linear structures, we demonstrated the distinct biological effects of Communis and Communis-AAAA. This is the first study with Chartegellus communis venom, and both Communis and Communis-AAAA are unpublished peptides.


Asunto(s)
Alanina/química , Hemólisis/efectos de los fármacos , Péptidos/farmacología , Venenos de Avispas/farmacología , Secuencia de Aminoácidos/genética , Animales , Humanos , Oligopéptidos/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Péptidos/química , Péptidos/genética , Tripsina/química , Venenos de Avispas/química , Venenos de Avispas/genética , Avispas/química , Avispas/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-26257776

RESUMEN

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety.

5.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954768

RESUMEN

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety.(AU)


Asunto(s)
Animales , Venenos de Artrópodos , Productos Biológicos , Sistema Nervioso Central , Enfermedades del Sistema Nervioso
6.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484613

RESUMEN

The impact of neurological disorders in society is growing with alarming estimations for an incidence increase in the next decades. These disorders are generally chronic and can affect individuals early during productive life, imposing real limitations on the performance of their social roles. Patients can have their independence, autonomy, freedom, self-image, and self-confidence affected. In spite of their availability, drugs for the treatment of these disorders are commonly associated with side effects, which can vary in frequency and severity. Currently, no effective cure is known. Nowadays, the biopharmaceutical research community widely recognizes arthropod venoms as a rich source of bioactive compounds, providing a plethora of possibilities for the discovery of new neuroactive compounds, opening up novel and attractive opportunities in this field. Several identified molecules with a neuropharmacological profile can act in the central nervous system on different neuronal targets, rendering them useful tools for the study of neurological disorders. In this context, this review aims to describe the current main compounds extracted from arthropod venoms for the treatment of five major existing neurological disorders: stroke, Alzheimers disease, epilepsy, Parkinsons disease, and pathological anxiety.


Asunto(s)
Animales , Animales Ponzoñosos , Enfermedades del Sistema Nervioso/terapia , Venenos de Artrópodos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...