Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36829483

RESUMEN

Plant pathogens cause huge losses and have been an important constraint to a worldwide increase in crop production and productivity [...].

2.
Biology (Basel) ; 12(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36829545

RESUMEN

In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.

3.
Methods Mol Biol ; 2638: 301-314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781651

RESUMEN

In the last few years, the traceability and labeling of processed food and feeds have gained increasing importance due to the impact that mislabeling and product fraud may have on human/animal health or on the quality of final products, such as milk, cheese, and meat, as a consequence of animal dietary. The presence of contaminants or possible frauds due to the use of alternative plant materials in food and feeds can greatly impact the economy; therefore, they are becoming important targets for product certification by competent institutional services. This is especially relevant when complex matrixes are considered, in which the visual identification of the different components is quite difficult or even impossible. Despite the existence of mandatory traceability requirements for the analysis of feed/food composition addressed by European Community regulations, the labels do not always provide a sufficient guarantee about the ingredients and additive composition of those products. In this sense, the development of new methodologies that aim to assess the traceability of feed and food complex matrixes is crucial. In this chapter, a general protocol is presented for the establishment of quantitative real-time PCR-based techniques based on TaqMan assays applied to feed/food traceability, with a special focus on applications in the areas of food and feed security (e.g., for the detection of plant species involved in allergenic reactions), fraud detection (e.g., genetically modified organisms), and certification (e.g., protected denomination of origin).


Asunto(s)
Carne , Plantas , Animales , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carne/análisis , Leche , Unión Europea , Alimentación Animal/análisis
4.
Biology (Basel) ; 11(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35205101

RESUMEN

Tomato, one of the most cultivated and economically important vegetable crops throughout the world, is affected by a panoply of different pathogens that reduce yield and affect product quality. The study of tomato-pathogen system arises as an ideal system for better understanding the molecular mechanisms underlying disease resistance, offering an opportunity of improving yield and quality of the products. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs act as transcriptional activators or repressors of gene expression and are involved in large-scale biological phenomena. They are key regulators of central components of plant innate immune system and basal defense in diverse biological processes, including defense responses to pathogens. Here, we present an overview of recent studies of tomato TFs regarding defense responses to biotic stresses. Hence, we focus on different families of TFs, selected for their abundance, importance, and availability of functionally well-characterized members in response to pathogen attack. Tomato TFs' roles and possibilities related to their use for engineering pathogen resistance in tomato are presented. With this review, we intend to provide new insights into the regulation of tomato defense mechanisms against invading pathogens in view of plant breeding.

5.
Plants (Basel) ; 10(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34834732

RESUMEN

Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.

6.
Viruses ; 13(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34696465

RESUMEN

Olea europaea Geminivirus (OEGV) was recently identified in olive in Italy through HTS. In this work, we used HTS to show the presence of an OEGV isolate in Portuguese olive trees and suggest the evolution direction of OEGV. The bipartite genome (DNA-A and DNA-B) of the OEGV-PT is similar to Old World begomoviruses in length, but it lacks a pre-coat protein (AV2), which is a typical feature of New World begomoviruses (NW). DNA-A genome organization is closer to NW, containing four ORFs; three in complementary-sense AC1/Rep, AC2/TrAP, AC3/REn and one in virion-sense AV1/CP, but no AC4, typical of begomoviruses. DNA-B comprises two ORFs; MP in virion sense with higher similarity to the tyrosine phosphorylation site of NW, but in opposite sense to begomoviruses; BC1, with no known conserved domains in the complementary sense and no NSP typical of bipartite begomoviruses. Our results show that OEGV presents the longest common region among the begomoviruses, and the TATA box and four replication-associated iterons in a completely new arrangement. We propose two new putative conserved regions for the geminiviruses CP. Lastly, we highlight unique features that may represent a new evolutionary direction for geminiviruses and suggest that OEGV-PT evolution may have occurred from an ancient OW monopartite Begomovirus that lost V2 and C4, gaining functions on cell-to-cell movement by acquiring a DNA-B component.


Asunto(s)
Evolución Molecular , Geminiviridae/clasificación , Geminiviridae/genética , Genoma Viral , Olea/virología , Begomovirus/genética , ADN Viral , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Italia , Filogenia , Enfermedades de las Plantas/virología
7.
Viruses ; 13(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34696503

RESUMEN

Viruses may cause devastating diseases in several organisms; however, they are simple systems that can be manipulated to be beneficial and useful for many purposes in different areas. In medicine, viruses have been used for a long time in vaccines and are now being used as vectors to carry materials for the treatment of diseases, such as cancer, being able to target specific cells. In agriculture, viruses are being studied to introduce desirable characteristics in plants or render resistance to biotic and abiotic stresses. Viruses have been exploited in nanotechnology for the deposition of specific metals and have been shown to be of great benefit to nanomaterial production. They can also be used for different applications in pharmacology, cosmetics, electronics, and other industries. Thus, viruses are no longer only seen as enemies. They have shown enormous potential, covering several important areas in our lives, and they are making our lives easier and better. Although viruses have already proven their potential, there is still a long road ahead. This prompt us to propose this theme in the Special Issue "The application of viruses to biotechnology". We believe that the articles gathered here highlight recent significant advances in the use of viruses in several fields, contributing to the current knowledge on virus applications.


Asunto(s)
Biotecnología , Virus , Agricultura , Animales , Expresión Génica , Terapia Genética , Vectores Genéticos , Humanos , Nanoestructuras , Nanotecnología , Plantas/virología , Vacunas Virales , Virus/genética
8.
Hortic Res ; 8(1): 171, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333540

RESUMEN

Tomato (Solanum lycopersicum) is one of the most economically important vegetables throughout the world. It is one of the best studied cultivated dicotyledonous plants, often used as a model system for plant research into classical genetics, cytogenetics, molecular genetics, and molecular biology. Tomato plants are affected by different pathogens such as viruses, viroids, fungi, oomycetes, bacteria, and nematodes, that reduce yield and affect product quality. The study of tomato as a plant-pathogen system helps to accelerate the discovery and understanding of the molecular mechanisms underlying disease resistance and offers the opportunity of improving the yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques, that allow the identification of plant key functional genes in susceptible and resistant responses, and the understanding of the molecular basis of compatible interactions during pathogen attack. Next-generation sequencing technologies (NGS), which produce massive quantities of sequencing data, have greatly accelerated research in biological sciences and offer great opportunities to better understand the molecular networks of plant-pathogen interactions. In this review, we summarize important research that used high-throughput RNA-seq technology to obtain transcriptome changes in tomato plants in response to a wide range of pathogens such as viruses, fungi, bacteria, oomycetes, and nematodes. These findings will facilitate genetic engineering efforts to incorporate new sources of resistance in tomato for protection against pathogens and are of major importance for sustainable plant-disease management, namely the ones relying on the plant's innate immune mechanisms in view of plant breeding.

9.
Biology (Basel) ; 10(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069323

RESUMEN

Plant diseases result in severe losses to natural plant systems, and also cause problems for economics and production in agricultural systems [...].

10.
Viruses ; 13(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478128

RESUMEN

Plant viruses cause devastating diseases in many agriculture systems, being a serious threat for the provision of adequate nourishment to a continuous growing population. At the present, there are no chemical products that directly target the viruses, and their control rely mainly on preventive sanitary measures to reduce viral infections that, although important, have proved to be far from enough. The current most effective and sustainable solution is the use of virus-resistant varieties, but which require too much work and time to obtain. In the recent years, the versatile gene editing technology known as CRISPR/Cas has simplified the engineering of crops and has successfully been used for the development of viral resistant plants. CRISPR stands for 'clustered regularly interspaced short palindromic repeats' and CRISPR-associated (Cas) proteins, and is based on a natural adaptive immune system that most archaeal and some bacterial species present to defend themselves against invading bacteriophages. Plant viral resistance using CRISPR/Cas technology can been achieved either through manipulation of plant genome (plant-mediated resistance), by mutating host factors required for viral infection; or through manipulation of virus genome (virus-mediated resistance), for which CRISPR/Cas systems must specifically target and cleave viral DNA or RNA. Viruses present an efficient machinery and comprehensive genome structure and, in a different, beneficial perspective, they have been used as biotechnological tools in several areas such as medicine, materials industry, and agriculture with several purposes. Due to all this potential, it is not surprising that viruses have also been used as vectors for CRISPR technology; namely, to deliver CRISPR components into plants, a crucial step for the success of CRISPR technology. Here we discuss the basic principles of CRISPR/Cas technology, with a special focus on the advances of CRISPR/Cas to engineer plant resistance against DNA and RNA viruses. We also describe several strategies for the delivery of these systems into plant cells, focusing on the advantages and disadvantages of the use of plant viruses as vectors. We conclude by discussing some of the constrains faced by the application of CRISPR/Cas technology in agriculture and future prospects.


Asunto(s)
Ingeniería Genética , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Agricultura/métodos , Sistemas CRISPR-Cas , Productos Agrícolas/virología , Resistencia a la Enfermedad/genética , Edición Génica , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética
11.
Biology (Basel) ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256028

RESUMEN

Grapevine trunk diseases (GTDs) are the most widespread fungal diseases, affecting grapevines in all the major growing regions of the world, and their complete eradication is still not possible. Aiming to search alternatives to avoid the spread and high incidence of these diseases, the present work intended to molecularly identify the grapevine endophytic community, the phytopathogenic fungi associated with GTDs in vineyards within the Alentejo region, and to test potential antagonist microorganisms as biological control candidates against GTDs-associated fungi. Grapevine endophytic community showed a wide variety of fungi in GTDs' asymptomatic and symptomatic plants, nine of them previously described as GTDs-associated fungi. GTDs prevalent fungi identified in symptomatic plants were Diaporthe sp., Neofusicoccum sp., and H. viticola. Almost all these fungi were also detected in asymptomatic plants, which shows the importance of investigating the interactions of fungal communities and confirms the need for early diagnosis of these diseases. Direct inhibition antagonism tests were performed among identified endophytes and GTDs phytopathogenic fungi, and all the endophyte fungi showed potential as biocontrol agents. Our findings suggest that endophytes are promising candidates for their use in biological control due to their antagonistic activity against the mycelia growth of some GTDs-associated fungi.

12.
Biology (Basel) ; 9(3)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138156

RESUMEN

The sustainability of agriculture requires the adoption of agricultural soil conservation practices with positive impacts on soil quality, which can promote beneficial soil microbiota like arbuscular mycorrhizal fungi (AMF) and its diversity. This study aims to assess the influence of the presence of intact extraradical mycelium as a preferential source of inoculum of the native AMF in order to guarantee a better colonization as well as its possible bioprotective effect against Magnaporthiopsis maydis. In order to vary the available extraradical mycelium, two experiments, with and without cover crop, were carried out, in which two tillage systems and two maize varieties were studied. The capitalization of the benefits, in terms of grain production and M. maydis presence, associated to the cover crop were only achieved with minimum tillage. Therefore, both cultural practices are necessary to reduce the fungus presence, coupling the effect of mycorrhization together with other benefits associated with the cover crop. Although in the absence of a cover crop and using conventional tillage, yields and lower levels of M. maydis are possibly achieved, this system is more dependent on the variety used, does not benefit from the advantages associated with the cover crop, is more expensive, and environmentally unsustainable.

13.
Plants (Basel) ; 8(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470646

RESUMEN

In this study, the presence and variability of Colletotrichum spp. was evaluated by comparing fungal isolates obtained from olive trees under long-time phytosanitary treatments with trees without any phytosanitary treatments (treated and untreated, respectively). Olive fruits of trees of the highly susceptible 'Galega vulgar' cultivar growing in the Alentejo region were used as samples. From the 210 olive trees sampled (half from treated and half from untreated orchards), 125 (59.5%) presented Colletotrichum spp., with a significant lower number of infected trees in treated (39) when compared to untreated orchards (86). The alignment and analysis of beta-tubulin (tub2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), chitin synthase (CHS-1) and histone H3 (HIS-3) gene sequences allowed the identification of all 125 isolates as belonging to the C. acutatum complex. The vast majority of the isolates (124) were identified as C. nymphaeae and one isolate, from an untreated tree, was identified as C. godetiae. Isolates were divided into five different groups: Group A: 39 isolates from treated trees matched in 100% with C. nymphaeae sequences from the database; Group B: 76 isolates from untreated trees matched in 100% with C. nymphaeae sequences from the database; Group C: one isolate from untreated trees presenting a single nucleotidic difference in the HIS-3 sequence; Group D: eight isolates from untreated trees presenting differences in two nucleotides in the tub2 sequences that changed the protein structure, together with differences in two specific nucleotides of the GAPDH sequences; Group E: one isolate, from untreated olive trees, matched 100% with C. godetiae sequences from the database in all genes. Considering the similarities of the sampled areas, our results show that the long-time application of fungicides may have caused a reduction in the number of olive trees infected with Colletotrichum spp. but an increase in the number of fruits positive to Colletotrichum spp. within each tree, which may suggest different degrees of virulence of Colletotrichum isolates from trees growing different management regimes. It is imperative that the fungicides described as causing resistance are applied at appropriate times and intervals, since their efficiency decreases when applied incorrectly and new and more virulent species may arise.

14.
Plants (Basel) ; 8(6)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212781

RESUMEN

Venturia oleaginea and Pseudocercospora cladosporioides are two of the most important olive fungal pathogens causing leaf spots: peacock spot, and cercosporiosis, respectively. In the present study, fungal communities associated with the presence of these pathogens were investigated. Overall, 300 symptomatic and asymptomatic trees from different cultivars were sampled from Alentejo, Portugal. A total of 788 fungal isolates were obtained and classified into 21 OTUs; Ascomycota was clearly the predominant phylum (96.6%). Trees from cultivar 'Galega vulgar' showed a significant higher fungal richness when compared to 'Cobrançosa', which in turn showed significant higher values than 'Picual'. Concerning plant health status, symptomatic plants showed significant higher fungal richness, mainly due to the high number of isolates of the pathogens V. oleaginea and P. cladosporioides. In terms of fungal diversity, there were two major groups: ca. 90% of the isolates found in symptomatic plants belonged to V. oleaginea, P. cladosporioides, Chalara sp., and Foliophoma sp. while ca. 90% of the isolates found in asymptomatic plants, belonged to Alternaria sp. and Epicoccum sp. This study highlights the existence of different fungal communities in olive trees, including potential antagonistic organisms that can have a significant impact on diseases and consequently on olive production.

15.
Front Plant Sci ; 10: 694, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191591

RESUMEN

Sensitive detection of viruses in olive orchards is actually of main importance since these pathogenic agents cannot be treated, their dissemination is quite easy, and they can have eventual negative effects on olive oil quality. The work presented here describes the development and application of a new SYBR® Green-based real-time quantitative PCR (qPCR) analysis for specific and reliable quantification of highly spread olive tree viruses: Olive latent virus 1 (OLV-1), Tobacco necrosis virus D (TNV-D), Olive mild mosaic virus (OMMV), and Olive leaf yellowing-associated virus (OLYaV). qPCR methodology revealed high specificity and sensitivity, estimated in the range of 0.8-8 copies of the virus genome, for the studied viruses. For validation of the method, total RNA and double strand RNA (dsRNA) from naturally infected trees were used. In a first trial, dsRNAs from trees of cv. "Galega vulgar" from a Portuguese orchard, were subjected to qPCR and from the 30 samples tested, 26 were TNV-D and/or OMMV-positive and 25 were OLV-1 positive. In a second trial, total RNA from trees of different cultivars from Tunisian orchards, were here tested by qPCR and all viruses were detected. From the 33 samples studied, the most prevalent virus detected in Tunisia orchards was OLV-1 (31 samples diagnosed), followed by OLYaV (20 samples diagnosed), and finally the combination in last TNV-D and/or OMMV (12 samples diagnosed). In both trials, qPCR demonstrated to be effective and sensitive, even when using total RNA as template. qPCR through the use of a SYBR® Green methodology enabled, for the first time, a reliable, sensitive, and reproducible estimation of virus accumulation in infected olive trees, in which viruses are usually in low titres, that will allow gaining new insights in virus biology essential for disease control and give an important contribution for establishment of sanitary certification of olive propagative material.

16.
Viruses ; 10(8)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096871

RESUMEN

RNA silencing is an important defense mechanism in plants, yet several plant viruses encode proteins that suppress this mechanism. In this study, the genome of the Olive mild mosaic virus (OMMV) was screened for silencing suppressors. The full OMMV cDNA and 5 OMMV open reading frames (ORFs) were cloned into the Gateway binary vector pK7WG2, transformed into Agrobacterium tumefaciens, and agroinfiltrated into N. benthamiana 16C plants. CP and p6 showed suppressor activity, with CP showing significantly higher activity than p6, yet activity that was lower than the full OMMV, suggesting a complementary action of CP and p6. These viral suppressors were then used to induce OMMV resistance in plants based on RNA silencing. Two hairpin constructs targeting each suppressor were agroinfiltrated in N. benthamiana plants, which were then inoculated with OMMV RNA. When silencing of both suppressors was achieved, a significant reduction in viral accumulation and symptom attenuation was observed as compared to those of the controls, as well as to when each construct was used alone, proving them to be effective against OMMV infection. This is the first time that a silencing suppressor was found in a necrovirus, and that two independent proteins act as silencing suppressors in a virus member of the Tombusviridae family.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Interferencia de ARN , Tombusviridae/genética , Proteínas Virales/genética , Agrobacterium tumefaciens/genética , Clonación Molecular , Vectores Genéticos , Genoma Viral , Plantas Modificadas Genéticamente/virología , Nicotiana/virología , Proteínas Virales/metabolismo
17.
PLoS One ; 13(1): e0190668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293638

RESUMEN

Traceability of processed food and feed products has been gaining importance due to the impact that those products can have on human/animal health and to the associated economic and legal concerns, often related to adulterations and frauds as it can be the case for meat and milk. Despite mandatory traceability requirements for the analysis of feed composition, few reliable and accurate methods are presently available to enforce the legislative frame and allow the authentication of animal feeds. In this study, nine sensitive and species-specific real-time PCR TaqMan MGB assays are described for plant species detection in animal feed samples. The method is based on selective real-time qPCR (RT-qPCR) amplification of target genes belonging to the alternative oxidase (AOX) gene family. The plant species selected for detection in feed samples were wheat, maize, barley, soybean, rice and sunflower as common components of feeds, and cotton, flax and peanut as possible undesirable contaminants. The obtained results were compared with end-point PCR methodology. The applicability of the AOX TaqMan assays was evaluated through the screening of commercial feed samples, and by the analysis of plant mixtures with known composition. The RT-qPCR methodology allowed the detection of the most abundant species in feeds but also the identification of contaminant species present in lower amounts, down to 1% w/w. AOX-based methodology provides a suitable molecular marker approach to ascertain plant species composition of animal feed samples, thus supporting feed control and enforcement of the feed sector and animal production.


Asunto(s)
Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
18.
J AOAC Int ; 101(1): 227-234, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762324

RESUMEN

A consortium of European enterprises and research institutions has been engaged in the Feed-Code Project with the aim of addressing the requirements stated in European Union Regulation No. 767/2009, concerning market placement and use of feed of known and ascertained botanical composition. Accordingly, an interlaboratory trial was set up to compare the performance of different assays based either on optical microscope or DNA analysis for the qualitative and quantitative identification of the composition of compound animal feeds. A tubulin-based polymorphism method, on which the Feed-Code platform was developed, provided the most accurate results. The present study highlights the need for the performance of ring trials for the determination of the botanical composition of animal feeds and raises an alarm on the actual status of analytical inaccuracy.


Asunto(s)
Alimentación Animal/análisis , Laboratorios/organización & administración , Europa (Continente)
19.
Physiol Plant ; 137(4): 578-91, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19825008

RESUMEN

Alternative oxidase (AOX) is a mitochondrial protein encoded by the nuclear genome. In higher plants AOX genes form a small multigene family mostly consisting of the two subfamilies AOX1 and AOX2. Daucus carota L. is characterized by a unique extension pattern of AOX genes. Different from other plant species studied so far it contains two genes in both subfamilies. Therefore, carrot was recently highlighted as an important model in AOX stress research to understand the evolutionary importance of both AOX subfamilies. Here we report on the expression patterns of DcAOX1a, DcAOX1b and DcAOX2a and DcAOX2b. Our results demonstrate that all of the four carrot AOX genes are expressed. Differential expression was observed in organs, tissues and during de novo induction of secondary root phloem explants to growth and development. DcAOX1a and DcAOX2a indicated a differential transcript accumulation but a similar co-expression pattern. The genes of each carrot AOX sub-family revealed a differential regulation and responsiveness. DcAOX2a indicated high inducibility in contrast to DcAOX2b, which generally revealed low transcript abundance and rather weak responses. In search for within-gene sequence differences between both genes as a potential reason for the differential expression patterns, the structural organization of the two genes was compared. DcAOX2a and DcAOX2b showed high sequence similarity in their open reading frames (ORFs). However, length variability was observed in the N-terminal exon1 region. The predicted cleavage site of the mitochondrial targeting sequence in this locus is untypical small for both genes and consists of 35 amino acids for DcAOX2a and of 21 amino acids for DcAOX2b. The importance of structural gene organization and the relevancy of within-gene sequence variations are discussed. Our results strengthen the value of carrot as a model plant for future studies on the importance of AOX sub family evolution.


Asunto(s)
Daucus carota/enzimología , Daucus carota/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oxidorreductasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/genética , Flores/enzimología , Flores/genética , Perfilación de la Expresión Génica , Proteínas Mitocondriales , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Oxidorreductasas/química , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Alineación de Secuencia
20.
Physiol Plant ; 137(4): 566-77, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19863755

RESUMEN

The gymnosperm Pinus pinea L. (stone pine) is a typical Mediterranean pine used for nuts and timber production, and as an ornamental around the world. Pine genomes are large in comparison to other species. The hypothesis that retrotransposons, such as gymny, made a large contribution to this alteration in genome size was recently confirmed. However, P. pinea is unique in other various aspects. P. pinea demonstrates a different pattern of gymny organization than other Pinus subgenera. Additionally, P. pinea has a highly recalcitrant behaviour in relation to standard conifer protocols for the induction of somatic embryogenesis or rooting. Because such types of cell reprogramming can be explained as a reaction of plant cells to external stress, it is of special interest to study sequence peculiarities in stress-inducible genes, such as the alternative oxidase (AOX). This is the first report containing molecular evidence for the existence of AOX in gymnosperms at the genetic level. P. pinea AOXs were isolated by a polymerase chain reaction (PCR) approach and three genes were identified. Two of the genes belong to the AOX1 subfamily and one belongs to the AOX2 subfamily. The existence of both AOX subfamilies in gymnosperms is reported here for the first time. This discovery supports the hypothesis that AOX1 and AOX2 subfamilies arose prior to the separation of gymnosperms and angiosperms, and indicates that the AOX2 is absent in monocots because of subsequent gene loss events. Polymorphic P. pinea AOX1 sequences from a selected genetic clone are presented indicating non-allelic, non-synonymous and synonymous translation products.


Asunto(s)
Genes de Plantas , Familia de Multigenes/genética , Oxidorreductasas/genética , Pinus/enzimología , Pinus/genética , Secuencia de Aminoácidos , Secuencia Conservada , Evolución Molecular , Proteínas Mitocondriales , Datos de Secuencia Molecular , Oxidorreductasas/química , Filogenia , Proteínas de Plantas , Polimorfismo de Nucleótido Simple/genética , Biosíntesis de Proteínas , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...