Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 321: 138133, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36791815

RESUMEN

The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances. The negative slope between log Kd and pH became steeper with increasing perfluorocarbon chain length of the PFAS (r2 = 0.75, p ≤ 0.05). Organic carbon (OC) alone was a poor predictor of the partitioning for all PFASs, except for FOSA (r2 = 0.71), and the OC-normalized PFAS partitioning, as derived from organic soil materials, underestimated PFAS sorption to the soils. Multiple linear regression suggested sorption contributions (p ≤ 0.05) from OC for perfluorooctane sulfonate (PFOS) and FOSA, and Fe/Al (hydr)oxides for PFOS, FOSA, and perfluorodecanoate (PFDA). FOSA was the only substance under study for which there was a statistically significant correlation between its binding and soil texture (silt + clay). To predict PFAS sorption, the surface net charge of the soil organic matter fraction of all soils was calculated using the Stockholm Humic Model. When calibrated against charge-dependent PFAS sorption to a peat (Oe) material, the derived model significantly underestimated the measured Kd values for 10 out of 11 soils. To conclude, additional sorbents, possibly including silicate minerals, contribute to the binding of PFASs in soil. More research is needed to develop geochemical models that can accurately predict PFAS sorption in soils.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Suelo/química , Ácidos Alcanesulfónicos/química , Carbono , Fluorocarburos/análisis , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 297: 134167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35276112

RESUMEN

The charge- and concentration-dependent sorption behavior of a range of per- and polyfluoroalkyl substances (PFASs) was studied for three organic soil samples with different organic matter quality, one Spodosol Oe horizon (Mor Oe) and two Sphagnum peats with different degrees of decomposition (Peat Oi and Peat Oe). Sorption to the two peat materials was, on average, four times stronger compared to that onto the Mor Oe material. In particular, longer-chained PFASs were more strongly bound by the two peats as compared to the Mor Oe sample. The combined results of batch sorption experiments and 13C NMR spectroscopy suggested sorption to be positively related to the content of carbohydrates (i.e., O-alkyl carbon). Sorption of all PFAS subclasses was inversely related to the pH value in all soils, with the largest pH effects being observed for perfluoroalkyl carboxylates (PFCAs) with C10 and C11 perfluorocarbon chain lengths. Experimentally determined sorption isotherms onto the poorly humified Peat Oi did not deviate significantly from linearity for most substances, while for the Mor Oe horizon, sorption nonlinearity was generally more pronounced. This work should prove useful in assessing PFAS sorption and leaching in organic soil horizons within environmental risk assessment.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Carbono , Ácidos Carboxílicos , Fluorocarburos/análisis , Suelo/química
3.
Environ Sci Technol ; 54(24): 15722-15730, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33244971

RESUMEN

An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.


Asunto(s)
Fluorocarburos , Adsorción , Alcanosulfonatos , Compuestos Férricos
4.
Chemosphere ; 234: 931-941, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31519102

RESUMEN

Understanding the occurrence and sources of organic micropollutants (OMPs) in aquatic environments is essential for environmental risk assessment and adequate interventions to secure good status of aquatic environments. The occurrence and source apportionment of 77 OMPs in the River Fyris catchment (Uppsala, Sweden) were investigated by comparing hospital wastewater, wastewater treatment plant (WWTP) effluent, and surface water. Hospital wastewater was identified as an important source for some classes of OMPs, e.g., antibiotics (number of OMPs (n) = 6) and antidepressants (n = 4), contributing 38% and 31%, respectively, of the mass loads in total WWTP influent. Painkillers (n = 5) and hormones (n = 3), originating mainly from urban Uppsala, contributed 94% and 95%, respectively. WWTP removal efficiency varied from 100% for acetaminophen to <0% for i.e. clindamycin, lamotrigine, bicalutamide, and sucralose. In the recipient River Fyris, the ΣOMP concentration downstream of the WWTP (738 ng L-1) was more than double that upstream (338 ng L-1), demonstrating the high impact of the WWTP on recipient water quality. Surface water risk quotients (RQs) showed a moderate risk of adverse chronic effects (RQ > 0.1) for trimethoprim, norsertraline, and metoprolol downstream of the WWTP, and for norsertraline in the recipient river upstream and Lake Ekoln downstream of the WWTP. Recipient metoprolol and trimethoprim, compounds poorly removed in the WWTP, mainly (>90%) originated from wastewater from urban Uppsala, whereas recipient norsertraline originated upstream of the city. No risk compound was apparently sourced from hospital wastewater.


Asunto(s)
Monitoreo del Ambiente , Hospitales , Eliminación de Residuos Líquidos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Ciudades , Lagos , Ríos , Suecia
5.
Chemosphere ; 207: 183-191, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29793030

RESUMEN

Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al3+, Ca2+ and Na+. Often, the organic C-normalized partitioning coefficients (KOC) showed a negative relationship to both pH (Δlog KOC/ΔpH = -0.32 ±â€¯0.11 log units) and the SOM bulk net negative charge (Δlog KOC = -1.41 ±â€¯0.40 per log unit molc g-1). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log KOC units per CF2 moiety for C3-C10 PFCAs and C4, C6, and C8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C5-C8 PFCAs and C6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C9-C11 and C13 PFCAs, C8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant.


Asunto(s)
Cationes/química , Fluorocarburos/química , Suelo/química , Contaminantes Químicos del Agua/química , Fluorocarburos/análisis , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
6.
J Colloid Interface Sci ; 511: 474-481, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29073553

RESUMEN

The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) were investigated at the molecular level using neutron reflectometry. Representative PFASs with different chain length and functional groups were selected in this study including: perfluorobutane sulfonate (PFBS), perfluorohexanoate (PFHxA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA). All PFASs were found to interact with the bilayer by incorporation, indicating PFAS ability to accumulate once ingested or taken up by organisms. The interactions were observed to increase with chain length and vary with the functional group as SO2NH2(FOSA)>SO2O-(PFOS)>COO-(PFNA). The PFAS hydrophobicity, which is strongly correlated with perfluorocarbon chain length, was found to strongly influence the interactions. Longer chain PFASs showed higher tendency to penetrate into the bilayer compared to the short-chain compounds. The incorporated PFASs could for all substances but one (PFNA) be removed from the lipid membrane by gentle rinsing with water (2mLmin-1). Although short-chain PFASs have been suggested to be the potentially less bioaccumulative alternative, we found that in high enough concentrations they can also disturb the bilayer. The roughness and disorder of the bilayer was observed to increase as the concentration of PFASs increased (in particular for the high concentrations of short-chain substances i.e. PFHxA and PFBS), which can be an indication of aggregation of PFASs in the bilayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...