Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 9(19): 3247-51, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23606323

RESUMEN

Blue, pink, and yellow colorations appear from twisted bi-layer graphene (tBLG) when transferred to a SiO2 /Si substrate (SiO2 = 100 nm-thick). Raman and electron microscope studies reveal that these colorations appear for twist angles in the 9-15° range. Optical contrast simulations confirm that the observed colorations are related to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG/100 nm-thick SiO2 /Si.

2.
J Nanosci Nanotechnol ; 10(6): 3959-64, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20355398

RESUMEN

We have studied in detail the carbon and nitrogen bonding environments in nitrogen-doped single-walled carbon nanotubes (SWCNTs). The samples consisting of long strands of N-doped SWCNTs were synthesized using an aerosol assisted chemical vapor deposition method involving benzylamine-ethanol-ferrocene solutions. The studied samples were produced using different benzylamine concentrations in the solutions, and exhibited a maximum concentration of ca. 0.3%at of N, determined by X-ray photoelectron spectroscopy (XPS). In general, we observed that the ratio between substitutional nitrogen and the pyridine-like bonded nitrogen varied upon the precursor composition. Moreover, we have observed that the sp2-like substitutional configuration of the C-N bond does not exceed the 50% of the total N atomic incorporation. In addition, we have characterized all these samples using Raman spectroscopy and electron microscopy.

4.
Nano Lett ; 9(6): 2267-72, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19449833

RESUMEN

Substitutional phosphorus doping in single-wall carbon nanotubes (SWNTs) is investigated by density functional theory and resonance Raman spectroscopy. Electronic structure calculations predict charge localization on the phosphorus atom, generating nondispersive valence and conduction bands close to the Fermi level. Besides confirming sustitutional doping, accurate analysis of electron and phonon renormalization effects in the double-resonance Raman process elucidates the different nature of the phosphorus donor doping (localized) when compared to nitrogen substitutional doping (nonlocalized) in SWNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...