Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 748239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675966

RESUMEN

The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.

2.
Plant Physiol ; 170(4): 2312-24, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26839127

RESUMEN

PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Simbiosis , Ubiquitinación , Recuento de Colonia Microbiana , Glomeromycota/fisiología , Micorrizas/crecimiento & desarrollo , Fosforilación , Proteínas de Plantas/química , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Biol Chem ; 287(14): 10812-23, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334694

RESUMEN

The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.


Asunto(s)
Membrana Celular/metabolismo , Medicago truncatula/citología , Medicago truncatula/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Glicosilación , Lisina , Medicago truncatula/fisiología , Modelos Moleculares , Nodulación de la Raíz de la Planta , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal
4.
J Biol Chem ; 286(13): 11202-10, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21205819

RESUMEN

Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/química , Medicago truncatula/enzimología , Modelos Moleculares , Proteínas de Plantas/química , Raíces de Plantas/enzimología , Activación Enzimática/genética , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Medicago truncatula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad
5.
Plant Cell ; 22(10): 3474-88, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20971894

RESUMEN

LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogen-fixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. truncatula Plant U-box protein 1 (PUB1) as an interactor of the kinase domain. In planta, both proteins are localized and interact in the plasma membrane. In M. truncatula, PUB1 is expressed specifically in symbiotic conditions, is induced by Nod factors, and shows an overlapping expression pattern with LYK3 during nodulation. Biochemical studies show that PUB1 has a U-box-dependent E3 ubiquitin ligase activity and is phosphorylated by the LYK3 kinase domain. Overexpression and RNA interference studies in M. truncatula show that PUB1 is a negative regulator of the LYK3 signaling pathway leading to infection and nodulation and is important for the discrimination of rhizobia strains producing variant Nod factors. The potential role of PUB E3 ubiquitin ligases in controlling plant-microbe interactions and development through interacting with receptor-like kinases is discussed.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Transducción de Señal , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Nicotiana/enzimología , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
6.
Mol Plant Microbe Interact ; 18(8): 869-76, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16134899

RESUMEN

The Medicago truncatula DMI2 gene encodes a receptorlike kinase required for establishing root endosymbioses. The DMI2 gene was shown to be expressed much more highly in roots and nodules than in leaves and stems. In roots, its expression was not altered by nitrogen starvation or treatment with lipochitooligosaccharidic Nod factors. Moreover, the DMI2 mRNA abundance in roots of the nfp, dmil, dmi3, nsp1, nsp2, and hcl symbiotic mutants was similar to the wild type, whereas lower levels in some dmi2 mutants could be explained by regulation by the nonsense-mediated decay, RNA surveillance mechanism. Using pDMI2::GUS fusions, the expression of DMI2 in roots appeared to be localized primarily in the cortical and epidermal cells of the younger, lateral roots and was not observed in the root apices. Following inoculation with Sinorhizobium meliloti, the DMI2 gene was induced in the nodule primordia, before penetration by the infection threads. No increased expression was seen in lateral-root primordia. In nodules, expression was observed primarily in a few cell layers of the pre-infection zone. These results are consistent with the DMI2 gene mediating Nod factor perception and transduction leading to rhizobial infection, not only in root epidermal cells but also during nodule development.


Asunto(s)
Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Simbiosis , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/enzimología , Medicago truncatula/microbiología , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Transporte de Proteínas , ARN Mensajero/metabolismo
7.
Plant Physiol ; 133(4): 1893-910, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14630957

RESUMEN

To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Medicago/enzimología , Lectinas de Plantas/genética , Raíces de Plantas/enzimología , Proteínas Quinasas/genética , Sinorhizobium meliloti/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Regulación Enzimológica de la Expresión Génica/genética , Medicago/clasificación , Medicago/genética , Medicago/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Lectinas de Plantas/química , Conformación Proteica , Proteínas Quinasas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Simbiosis
8.
Plant Physiol ; 131(3): 1124-36, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12644663

RESUMEN

The model legume Medicago truncatula contains at least six apyrase-like genes, five of which (MtAPY1;1, MtAPY1;2, MtAPY1;3, MtAPY1;4, and MtAPY1;5) are members of a legume-specific family, whereas a single gene (MtAPY2) has closer homologs in Arabidopsis. Phylogenetic analysis has revealed that the proteins encoded by these two plant gene families are more similar to yeast (Saccharomyces cerevisiae) GDA1 and to two proteins encoded by newly described mammalian genes (ENP5 and 6) than they are to mammalian CD39- and CD39-like proteins. Northern analyses and analyses of the frequencies of expressed sequence tags (ESTs) in different cDNA libraries suggest that in roots, leaves, and flowers, the more highly expressed genes are MtAPY1;3/MtAPY2, MtAPY1;3/MtAPY1;5 and MtAPY1;2/MtAPY1;3 respectively. In roots, at least four of the MtAPY1 genes are induced transiently within 3 to 6 h by a stress response that seems to be ethylene independent because it occurs after treatment with an ethylene synthesis inhibitor and also in the skl ethylene-insensitive mutant. This response also occurs in roots of the following symbiotic mutants: dmi1, dmi2, dmi3, nsp, hcl, pdl, lin, and skl. No evidence was obtained for a rapid, transient, and specific induction of the MtAPY genes in roots in response to rhizobia or rhizobial lipochitooligosaccharidic Nod factors. Thus, our data suggest that the apyrase-like genes, which in several legumes have been implicated to play a role in the legume-rhizobia symbiosis (with some members being described as early nodulin genes), are not regulated symbiotically by rhizobia in M. truncatula.


Asunto(s)
Apirasa/genética , Lipopolisacáridos/farmacología , Medicago/genética , Raíces de Plantas/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Apirasa/metabolismo , Secuencia de Bases , Northern Blotting , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago/enzimología , Datos de Secuencia Molecular , Mutación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Análisis de Secuencia de ADN , Estrés Mecánico , Simbiosis/genética , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA