Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Rep Med ; : 101595, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38838676

RESUMEN

Luminal androgen receptor (LAR)-enriched triple-negative breast cancer (TNBC) is a distinct subtype. The efficacy of AR inhibitors and the relevant biomarkers in neoadjuvant therapy (NAT) are yet to be determined. We tested the combination of the AR inhibitor enzalutamide (120 mg daily by mouth) and paclitaxel (80 mg/m2 weekly intravenously) (ZT) for 12 weeks as NAT for LAR-enriched TNBC. Eligibility criteria included a percentage of cells expressing nuclear AR by immunohistochemistry (iAR) of at least 10% and a reduction in sonographic volume of less than 70% after four cycles of doxorubicin and cyclophosphamide. Twenty-four patients were enrolled. Ten achieved a pathologic complete response or residual cancer burden-I. ZT was safe, with no unexpected side effects. An iAR of at least 70% had a positive predictive value of 0.92 and a negative predictive value of 0.97 in predicting LAR-enriched TNBC according to RNA-based assays. Our data support future trials of AR blockade in early-stage LAR-enriched TNBC.

2.
J Magn Reson Imaging ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294179

RESUMEN

BACKGROUND: Assessment of treatment response in triple-negative breast cancer (TNBC) may guide individualized care for improved patient outcomes. Diffusion tensor imaging (DTI) measures tissue anisotropy and could be useful for characterizing changes in the tumors and adjacent fibroglandular tissue (FGT) of TNBC patients undergoing neoadjuvant systemic treatment (NAST). PURPOSE: To evaluate the potential of DTI parameters for prediction of treatment response in TNBC patients undergoing NAST. STUDY TYPE: Prospective. POPULATION: Eighty-six women (average age: 51 ± 11 years) with biopsy-proven clinical stage I-III TNBC who underwent NAST followed by definitive surgery. 47% of patients (40/86) had pathologic complete response (pCR). FIELD STRENGTH/SEQUENCE: 3.0 T/reduced field of view single-shot echo-planar DTI sequence. ASSESSMENT: Three MRI scans were acquired longitudinally (pre-treatment, after 2 cycles of NAST, and after 4 cycles of NAST). Eleven histogram features were extracted from DTI parameter maps of tumors, a peritumoral region (PTR), and FGT in the ipsilateral breast. DTI parameters included apparent diffusion coefficients and relative diffusion anisotropies. pCR status was determined at surgery. STATISTICAL TESTS: Longitudinal changes of DTI features were tested for discrimination of pCR using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC). A P value <0.05 was considered statistically significant. RESULTS: 47% of patients (40/86) had pCR. DTI parameters assessed after 2 and 4 cycles of NAST were significantly different between pCR and non-pCR patients when compared between tumors, PTRs, and FGTs. The median surface/average anisotropy of the PTR, measured after 2 and 4 cycles of NAST, increased in pCR patients and decreased in non-pCR patients (AUC: 0.78; 0.027 ± 0.043 vs. -0.017 ± 0.042 mm2 /s). DATA CONCLUSION: Quantitative DTI features from breast tumors and the peritumoral tissue may be useful for predicting the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38083160

RESUMEN

We trained and validated a deep learning model that can predict the treatment response to neoadjuvant systemic therapy (NAST) for patients with triple negative breast cancer (TNBC). Dynamic contrast enhanced (DCE) MRI and diffusion-weighted imaging (DWI) of the pre-treatment (baseline) and after four cycles (C4) of doxorubicin/cyclophosphamide treatment were used as inputs to the model for prediction of pathologic complete response (pCR). Based on the standard pCR definition that includes disease status in either breast or axilla, the model achieved areas under the receiver operating characteristic curves (AUCs) of 0.96 ± 0.05, 0.78 ± 0.09, 0.88 ± 0.02, and 0.76 ± 0.03, for the training, validation, testing, and prospective testing groups, respectively. For the pCR status of breast only, the retrained model achieved prediction AUCs of 0.97 ± 0.04, 0.82 ± 0.10, 0.86 ± 0.03, and 0.83 ± 0.02, for the training, validation, testing, and prospective testing groups, respectively. Thus, the developed deep learning model is highly promising for predicting the treatment response to NAST of TNBC.Clinical Relevance- Deep learning based on serial and multiparametric MRIs can potentially distinguish TNBC patients with pCR from non-pCR at the early stage of neoadjuvant systemic therapy, potentially enabling more personalized treatment of TNBC patients.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Resultado del Tratamiento
4.
Front Oncol ; 13: 1264259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941561

RESUMEN

Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.

5.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37835523

RESUMEN

Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients' treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications.

6.
Ther Adv Med Oncol ; 15: 17588359231189422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547448

RESUMEN

Background: Recent advances have been made in targeting the phosphoinositide 3-kinase pathway in breast cancer. Phosphatase and tensin homolog (PTEN) is a key component of that pathway. Objective: To understand the changes in PTEN expression over the course of the disease in patients with triple-negative breast cancer (TNBC) and whether PTEN copy number variation (CNV) by next-generation sequencing (NGS) can serve as an alternative to immunohistochemistry (IHC) to identify PTEN loss. Methods: We compared PTEN expression by IHC between pretreatment tumors and residual tumors in the breast and lymph nodes after neoadjuvant chemotherapy in 96 patients enrolled in a TNBC clinical trial. A correlative analysis between PTEN protein expression and PTEN CNV by NGS was also performed. Results: With a stringent cutoff for PTEN IHC scoring, PTEN expression was discordant between pretreatment and posttreatment primary tumors in 5% of patients (n = 96) and between posttreatment primary tumors and lymph node metastases in 9% (n = 33). A less stringent cutoff yielded similar discordance rates. Intratumoral heterogeneity for PTEN loss was observed in 7% of the patients. Among pretreatment tumors, PTEN copy numbers by whole exome sequencing (n = 72) were significantly higher in the PTEN-positive tumors by IHC compared with the IHC PTEN-loss tumors (p < 0.0001). However, PTEN-positive and PTEN-loss tumors by IHC overlapped in copy numbers: 14 of 60 PTEN-positive samples showed decreased copy numbers in the range of those of the PTEN-loss tumors. Conclusion: Testing various specimens by IHC may generate different PTEN results in a small proportion of patients with TNBC; therefore, the decision of testing one versus multiple specimens in a clinical trial should be defined in the patient inclusion criteria. Although a distinct cutoff by which CNV differentiated PTEN-positive tumors from those with PTEN loss was not identified, higher copy number of PTEN may confer positive PTEN, whereas lower copy number of PTEN would necessitate additional testing by IHC to assess PTEN loss. Trial registration: NCT02276443.

7.
Acad Radiol ; 30(10): 2383-2395, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37455177

RESUMEN

Surgical treatment for breast cancer has evolved from radical mastectomy to modified radical mastectomy to breast-conserving surgery. As the de-escalation of surgical treatment for breast cancer continues, nonsurgical treatment for early-stage breast cancer with favorable ancillary features (low grade, positivity for hormone receptors) is being explored. Of the nonsurgical treatment options, cryoablation has demonstrated the greatest appeal, proven to be effective, safe, well tolerated, and feasible in an outpatient setting with local anesthetic alone. Results of past and interim results of current trials of cryoablation of stage I low-grade breast cancer with curative intent are promising, with an overall clinical success rate of 98% and recurrence rates consistent with those expected following lumpectomy. Cryoablation is also an alternative palliative treatment for patients who cannot tolerate or who have disease that is refractory to or recurs after standard-of-care breast cancer treatment and may have immunological therapeutic effects, warranting future research. Understanding the indications and optimal technique for breast cancer cryoablation and understanding typical imaging findings after cryoablation are essential to ensure the success of the procedure in carefully selected patients.


Asunto(s)
Neoplasias de la Mama , Criocirugía , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/tratamiento farmacológico , Criocirugía/métodos , Mastectomía , Mastectomía Segmentaria , Diagnóstico por Imagen
8.
Cancers (Basel) ; 15(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444385

RESUMEN

High stromal tumor-infiltrating lymphocytes (sTILs) are associated with improved pathologic complete response (pCR) in triple-negative breast cancer (TNBC). We hypothesize that integrating high sTILs and additional clinicopathologic features associated with pCR could enhance our ability to predict the group of patients on whom treatment de-escalation strategies could be tested. In this prospective early-stage TNBC neoadjuvant chemotherapy study, pretreatment biopsies from 408 patients were evaluated for their clinical and demographic features, as well as biomarkers including sTILs, Ki-67, PD-L1 and androgen receptor. Multivariate logistic regression models were developed to generate a computed response score to predict pCR. The pCR rate for the entire cohort was 41%. Recursive partitioning analysis identified ≥20% as the optimal cutoff for sTILs to denote 35% (143/408) of patients as having high sTILs, with a pCR rate of 59%, and 65% (265/408) of patients as having low sTILs, with a pCR rate of 31%. High Ki-67 (cutoff > 35%) was identified as the only predictor of pCR in addition to sTILs in the training set. This finding was verified in the testing set, where the highest computed response score encompassing both high sTILa and high Ki-67 predicted a pCR rate of 65%. Integrating Ki67 and sTIL may refine the selection of early stage TNBC patients for neoadjuvant clinical trials evaluating de-escalation strategies.

9.
Radiol Imaging Cancer ; 5(4): e230009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505106

RESUMEN

Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Mama
11.
Breast Cancer Res Treat ; 199(3): 457-469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061619

RESUMEN

PURPOSE: Neoadjuvant anti-PD-(L)1 therapy improves the pathological complete response (pCR) rate in unselected triple-negative breast cancer (TNBC). Given the potential for long-term morbidity from immune-related adverse events (irAEs), optimizing the risk-benefit ratio for these agents in the curative neoadjuvant setting is important. Suboptimal clinical response to initial neoadjuvant therapy (NAT) is associated with low rates of pCR (2-5%) and may define a patient selection strategy for neoadjuvant immune checkpoint blockade. We conducted a single-arm phase II study of atezolizumab and nab-paclitaxel as the second phase of NAT in patients with doxorubicin and cyclophosphamide (AC)-resistant TNBC (NCT02530489). METHODS: Patients with stage I-III, AC-resistant TNBC, defined as disease progression or a < 80% reduction in tumor volume after 4 cycles of AC, were eligible. Patients received atezolizumab (1200 mg IV, Q3weeks × 4) and nab-paclitaxel (100 mg/m2 IV,Q1 week × 12) as the second phase of NAT before undergoing surgery followed by adjuvant atezolizumab (1200 mg IV, Q3 weeks, × 4). A two-stage Gehan-type design was employed to detect an improvement in pCR/residual cancer burden class I (RCB-I) rate from 5 to 20%. RESULTS: From 2/15/2016 through 1/29/2021, 37 patients with AC-resistant TNBC were enrolled. The pCR/RCB-I rate was 46%. No new safety signals were observed. Seven patients (19%) discontinued atezolizumab due to irAEs. CONCLUSION: This study met its primary endpoint, demonstrating a promising signal of activity in this high-risk population (pCR/RCB-I = 46% vs 5% in historical controls), suggesting that a response-adapted approach to the utilization of neoadjuvant immunotherapy should be considered for further evaluation in a randomized clinical trial.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Antraciclinas/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Terapia Neoadyuvante , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
12.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831368

RESUMEN

Early assessment of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) is critical for patient care in order to avoid the unnecessary toxicity of an ineffective treatment. We assessed functional tumor volumes (FTVs) from dynamic contrast-enhanced (DCE) MRI after 2 cycles (C2) and 4 cycles (C4) of NAST as predictors of response in TNBC. A group of 100 patients with stage I-III TNBC who underwent DCE MRI at baseline, C2, and C4 were included in this study. Tumors were segmented on DCE images of 1 min and 2.5 min post-injection. FTVs were measured using the optimized percentage enhancement (PE) and signal enhancement ratio (SER) thresholds. The Mann-Whitney test was used to compare the performance of the FTVs at C2 and C4. Of the 100 patients, 49 (49%) had a pathologic complete response (pCR) and 51 (51%) had a non-pCR. The maximum area under the receiving operating characteristic curve (AUC) for predicting the treatment response was 0.84 (p < 0.001) for FTV at C4 followed by FTV at C2 (AUC = 0.82, p < 0.001). The FTV measured at baseline was not able to discriminate pCR from non-pCR. FTVs measured on DCE MRI at C2, as well as at C4, of NAST can potentially predict pCR and non-pCR in TNBC patients.

13.
NPJ Breast Cancer ; 9(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627285

RESUMEN

Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient's diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient's tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC.

14.
Sci Rep ; 13(1): 1171, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670144

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
15.
Cancer Res ; 82(18): 3394-3404, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35914239

RESUMEN

Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to improve targeting and evaluation of responses to therapy in this disease are needed. Here, we integrate quantitative MRI data with biologically based mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic therapy (NAST) on an individual basis. Specifically, 56 patients with TNBC enrolled in the ARTEMIS trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were acquired before treatment and after two and four cycles of A/C. A biologically based model was established to characterize tumor cell movement, proliferation, and treatment-induced cell death. Two evaluation frameworks were investigated using: (i) images acquired before and after two cycles of A/C for calibration and predicting tumor status after A/C, and (ii) images acquired before, after two cycles, and after four cycles of A/C for calibration and predicting response following NAST. For Framework 1, the concordance correlation coefficients between the predicted and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 0.94, respectively. For Framework 2, the biologically based model achieved an area under the receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating pathological complete response (pCR) from non-pCR, which is statistically superior (P &lt; 0.05) to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response. SIGNIFICANCE: Integrating MRI data with biologically based mathematical modeling successfully predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate a paradigm shift from simply assessing response to predicting and optimizing therapeutic efficacy.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Doxorrubicina , Femenino , Humanos , Imagen por Resonancia Magnética , Terapia Neoadyuvante/métodos , Paclitaxel , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
16.
Front Artif Intell ; 5: 876100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034598

RESUMEN

There is a need to identify biomarkers predictive of response to neoadjuvant chemotherapy (NACT) in triple-negative breast cancer (TNBC). We previously obtained evidence that a polyamine signature in the blood is associated with TNBC development and progression. In this study, we evaluated whether plasma polyamines and other metabolites may identify TNBC patients who are less likely to respond to NACT. Pre-treatment plasma levels of acetylated polyamines were elevated in TNBC patients that had moderate to extensive tumor burden (RCB-II/III) following NACT compared to those that achieved a complete pathological response (pCR/RCB-0) or had minimal residual disease (RCB-I). We further applied artificial intelligence to comprehensive metabolic profiles to identify additional metabolites associated with treatment response. Using a deep learning model (DLM), a metabolite panel consisting of two polyamines as well as nine additional metabolites was developed for improved prediction of RCB-II/III. The DLM has potential clinical value for identifying TNBC patients who are unlikely to respond to NACT and who may benefit from other treatment modalities.

17.
Clin Cancer Res ; 28(13): 2878-2889, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35507014

RESUMEN

PURPOSE: Metaplastic breast cancer (MpBC) is a rare subtype of breast cancer that is commonly triple-negative and poorly responsive to neoadjuvant therapy in retrospective studies. EXPERIMENTAL DESIGN: To better define clinical outcomes and correlates of response, we analyzed the rate of pathologic complete response (pCR) to neoadjuvant therapy, survival outcomes, and genomic and transcriptomic profiles of the pretreatment tumors in a prospective clinical trial (NCT02276443). A total of 211 patients with triple-negative breast cancer (TNBC), including 39 with MpBC, received doxorubicin-cyclophosphamide-based neoadjuvant therapy. RESULTS: Although not meeting the threshold for statistical significance, patients with MpBCs were less likely to experience a pCR (23% vs. 40%; P = 0.07), had shorter event-free survival (29.4 vs. 32.2 months, P = 0.15), metastasis-free survival (30.3 vs. 32.4 months, P = 0.22); and overall survival (32.6 vs. 34.3 months, P = 0.21). This heterogeneity is mirrored in the molecular profiling. Mutations in PI3KCA (23% vs. 9%, P = 0.07) and its pathway (41% vs. 18%, P = 0.02) were frequently observed and enriched in MpBCs. The gene expression profiles of each histologically defined subtype were distinguishable and characterized by distinctive gene signatures. Among nonmetaplastic (non-Mp) TNBCs, 10% possessed a metaplastic-like gene expression signature and had pCR rates and survival outcomes similar to MpBC. CONCLUSIONS: Further investigations will determine if metaplastic-like tumors should be treated more similarly to MpBC in the clinic. The 23% pCR rate in this study suggests that patients with MpBC should be considered for NAT. To improve this rate, a pathway analysis predicted enrichment of histone deacetylase (HDAC) and RTK/MAPK pathways in MpBC, which may serve as new targetable vulnerabilities.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/patología , Femenino , Humanos , Metaplasia , Terapia Neoadyuvante , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
18.
J Magn Reson Imaging ; 56(6): 1901-1909, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35499264

RESUMEN

BACKGROUND: Pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in triple-negative breast cancer (TNBC) is a strong predictor of patient survival. Edema in the peritumoral region (PTR) has been reported to be a negative prognostic factor in TNBC. PURPOSE: To determine whether quantitative apparent diffusion coefficient (ADC) features from PTRs on reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) predict the response to NAST in TNBC. STUDY TYPE: Prospective. POPULATION/SUBJECTS: A total of 108 patients with biopsy-proven TNBC who underwent NAST and definitive surgery during 2015-2020. FIELD STRENGTH/SEQUENCE: A 3.0 T/rFOV single-shot diffusion-weighted echo-planar imaging sequence (DWI). ASSESSMENT: Three scans were acquired longitudinally (pretreatment, after two cycles of NAST, and after four cycles of NAST). For each scan, 11 ADC histogram features (minimum, maximum, mean, median, standard deviation, kurtosis, skewness and 10th, 25th, 75th, and 90th percentiles) were extracted from tumors and from PTRs of 5 mm, 10 mm, 15 mm, and 20 mm in thickness with inclusion and exclusion of fat-dominant pixels. STATISTICAL TESTS: ADC features were tested for prediction of pCR, both individually using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC), and in combination in multivariable models with k-fold cross-validation. A P value < 0.05 was considered statistically significant. RESULTS: Fifty-one patients (47%) had pCR. Maximum ADC from PTR, measured after two and four cycles of NAST, was significantly higher in pCR patients (2.8 ± 0.69 vs 3.5 ± 0.94 mm2 /sec). The top-performing feature for prediction of pCR was the maximum ADC from the 5-mm fat-inclusive PTR after cycle 4 of NAST (AUC: 0.74; 95% confidence interval: 0.64, 0.84). Multivariable models of ADC features performed similarly for fat-inclusive and fat-exclusive PTRs, with AUCs ranging from 0.68 to 0.72 for the cycle 2 and cycle 4 scans. DATA CONCLUSION: Quantitative ADC features from PTRs may serve as early predictors of the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Estudios Prospectivos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética/métodos
19.
Cancers (Basel) ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35267631

RESUMEN

High stromal tumor-infiltrating lymphocytes (sTILs) are associated with an improved pathologic complete response (pCR) and survival in triple-negative breast cancer (TNBC). We hypothesized that high baseline sTILs would have a favorable prognostic impact in TNBC patients without a pCR after neoadjuvant chemotherapy (NACT). In this prospective NACT study, pretreatment biopsies from 318 patients with early-stage TNBC were evaluated for sTILs. Recursive partitioning analysis (RPA) was applied to search for the sTIL cutoff best associated with a pCR. With ≥20% sTILs identified as the optimal cutoff, 33% patients had high sTILs (pCR rate 64%) and 67% had low sTILs (pCR rate 29%). Patients were stratified according to the sTIL cutoff (low vs. high) and response to NACT (pCR vs. residual disease (RD)). The primary endpoint was event-free survival (EFS), with hazard ratios calculated using the Cox proportional hazards regression model and the 3-year restricted mean survival time (RMST) as primary measures. Within the high-sTIL group, EFS was better in patients with a pCR compared with those with RD (HR 0.05; 95% CI 0.01-0.39; p = 0.004). The difference in the 3-year RMST for EFS between the two groups was 5.6 months (95% CI 2.3-8.8; p = 0.001). However, among patients with RD, EFS was not significantly different between those with high sTILs and those with low sTILs (p = 0.7). RNA-seq analysis predicted more CD8+ T cells in the high-sTIL group with favorable EFS compared with the high-sTIL group with unfavorable EFS. This study did not demonstrate that high baseline sTILs confer a benefit in EFS in the absence of a pCR.

20.
Ultrasound Med Biol ; 48(6): 1010-1018, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35300879

RESUMEN

This study aimed to investigate mid-treatment breast tumor ultrasound characteristics that may predict eventual pathologic complete response (pCR) in triple-negative breast cancer; specifically, we examined associations between pCR and two parameters: tumor response pattern and tumor appearance. Ultrasound was performed at mid-treatment, defined as the completion of four cycles of anthracycline-based chemotherapy and before receiving taxane-based chemotherapy. Consensus imaging review was performed while blinded to pathology results (i.e., pCR/non-pCR) from surgery. Tumor response pattern was described as "complete," "concentric," "fragmented," "stable" or "progression." Tumor appearance was designated as "mass," "architectural distortion," "flat tumor bed" or "clip only." Univariate and multivariate regression analyses of 144 participants showed significant associations between mid-treatment response pattern and pCR (p = 0.0348 and p = 0.0173, respectively), with complete and concentric response patterns more likely to achieve pCR than other patterns. Univariate and multivariate regression analyses further showed significant associations between mid-treatment tumor appearance and pCR (p < 0.0001 for both), with persistent appearance of mass less likely than other appearances to achieve pCR. To conclude, our study demonstrated strong associations between pCR and both tumor response pattern and tumor appearance, thereby suggesting that these parameters have potential as qualitative imaging biomarkers of pCR in triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Quimioterapia Adyuvante/métodos , Femenino , Humanos , Terapia Neoadyuvante/métodos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...