Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 45(3): 992-8, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21174459

RESUMEN

The production of odiferous metabolites, such as 2-methlyisoborneol (MIB), is a major concern for water utilities worldwide. Although MIB has no known biological function, the presence of the earthy/musty taste and odor attributed to this compound result in the reporting of numerous complaints by consumers, which undermines water utility performance and the safe and adequate provision of potable waters. Cyanobacteria are the major producers of MIB in natural waters, by mechanisms that have heretofore remained largely unstudied. To investigate the fundamental biological mechanism of MIB biosynthesis in cyanobacteria, the genome of a MIB-producing Pseudanabaena limnetica was sequenced using Next Generation Sequencing, and the recombinant proteins derived from the putative MIB biosynthetic genes were biochemically characterized. We demonstrate that the biosynthesis of MIB in cyanobacteria is a result of 2 key reactions: 1) a S-adenosylmethionine-dependent methylation of the monoterpene precursor geranyl diphosphate (GPP) to 2-methyl-GPP catalyzed by geranyl diphosphate 2-methyltransferase (GPPMT) and 2) further cyclization of 2-methyl-GPP to MIB catalyzed by MIB synthase (MIBS) as part of a MIB operon. Based on a comparison of the component MIB biosynthetic genes in actinomycetes and cyanobacterial organisms, we hypothesize that there have been multiple rearrangements of the genes in this operon.


Asunto(s)
Canfanos/metabolismo , Cianobacterias/metabolismo , Contaminantes Químicos del Agua/metabolismo , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/metabolismo , Secuencia de Aminoácidos , Cianobacterias/clasificación , Cianobacterias/genética , Genes Bacterianos , Datos de Secuencia Molecular , Odorantes/análisis , Filogenia
2.
Proc Natl Acad Sci U S A ; 98(26): 14808-13, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11752428

RESUMEN

As the first structural elucidation of a modular polyketide synthase (PKS) domain, the crystal structure of the macrocycle-forming thioesterase (TE) domain from the 6-deoxyerythronolide B synthase (DEBS) was solved by a combination of multiple isomorphous replacement and multiwavelength anomalous dispersion and refined to an R factor of 24.1% to 2.8-A resolution. Its overall tertiary architecture belongs to the alpha/beta-hydrolase family, with two unusual features unprecedented in this family: a hydrophobic leucine-rich dimer interface and a substrate channel that passes through the entire protein. The active site triad, comprised of Asp-169, His-259, and Ser-142, is located in the middle of the substrate channel, suggesting the passage of the substrate through the protein. Modeling indicates that the active site can accommodate and orient the 6-deoxyerythronolide B precursor uniquely, while at the same time shielding the active site from external water and catalyzing cyclization by macrolactone formation. The geometry and organization of functional groups explain the observed substrate specificity of this TE and offer strategies for engineering macrocycle biosynthesis. Docking of a homology model of the upstream acyl carrier protein (ACP6) against the TE suggests that the 2-fold axis of the TE dimer may also be the axis of symmetry that determines the arrangement of domains in the entire DEBS. Sequence conservation suggests that all TEs from modular polyketide synthases have a similar fold, dimer 2-fold axis, and substrate channel geometry.


Asunto(s)
Esterasas/química , Proteínas de la Membrana/química , Complejos Multienzimáticos/química , Secuencia de Aminoácidos , Dimerización , Leucina/química , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido
3.
Proc Natl Acad Sci U S A ; 98(24): 13543-8, 2001 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-11698643

RESUMEN

The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-A resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg(2+) ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis.


Asunto(s)
Liasas de Carbono-Carbono/química , Secuencia de Aminoácidos , Liasas de Carbono-Carbono/metabolismo , Cristalografía por Rayos X , Difosfatos/química , Difosfatos/metabolismo , Fusarium/enzimología , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Terpenos/metabolismo
4.
Chem Biol ; 8(9): 899-912, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11564558

RESUMEN

BACKGROUND: Polyketides (PKs) and non-ribosomal peptides (NRPs) are therapeutically important natural products biosynthesized by multimodular protein assembly lines, termed the PK synthases (PKSs) and NRP synthetases (NRPSs), via a similar thiotemplate-mediated mechanism. The potential for productive interaction between these two parallel enzymatic systems has recently been demonstrated, with the discovery that PK/NRP hybrid natural products can be of great therapeutic importance. One newly discovered PK/NRP product, epothilone D from Sorangium cellulosum, has shown great potential as an anti-tumor agent. RESULTS: The chain-initiating methylthiazole ring of epothilone has been generated in vitro as an acyl-S-enzyme intermediate, using five domains from two modules of the polymodular epothilone synthetase. The acyl carrier protein (ACP) domain, excised from the EpoA gene, was expressed in Escherichia coli, purified as an apo protein, and then post-translationally primed with acetyl-CoA using the phosphopantetheinyl transferase enzyme Sfp. The four-domain 150-kDa EpoB subunit (cyclization-adenylation-oxidase-peptidyl carrier protein domains: Cy-A-Ox-PCP) was also expressed and purified in soluble form from E. coli. Post-translational modification with Sfp and CoASH introduced the HS-pantP prosthetic group to the apo-PCP, enabling subsequent loading with L-cysteine to generate the Cys-S-PCP acyl enzyme intermediate. When acetyl-S-ACP (EpoA) and cysteinyl-S-EpoB were mixed, the Cy domain of EpoB catalyzed acetyl transfer from EpoA to the amino group of the Cys-S-EpoB, generating a transient N-Ac-Cys-S-EpoB intermediate that is cyclized and dehydrated to the five-membered ring methylthiazolinyl-S-EpoB. Finally, the FMN-containing Ox domain of EpoB oxidized the dihydro heterocyclic thiazolinyl ring to the heteroaromatic oxidation state, the methylthiazolylcarboxy-S-EpoB. When other acyl-CoAs were substituted for acetyl-CoA in the Sfp-based priming of the apo-CP domain, additional alkylthiazolylcarboxy-S-EpoB acyl enzymes were produced. CONCLUSIONS: These experiments establish chain transfer across a PKS and NRPS interface. Transfer of the acetyl group from the ACP domain of EpoA to EpoB reconstitutes the start of the epothilone synthetase assembly line, and installs and converts a cysteine group into a methyl-substituted heterocycle during this natural product chain growth.


Asunto(s)
Antineoplásicos/metabolismo , Epotilonas , Macrólidos/metabolismo , Acilcoenzima A/química , Antineoplásicos/síntesis química , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Macrólidos/síntesis química , Complejos Multienzimáticos/síntesis química , Complejos Multienzimáticos/metabolismo
5.
Biotechnol Prog ; 17(4): 612-7, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11485419

RESUMEN

Polyketides, a large family of bioactive natural products, are synthesized from building blocks derived from alpha-carboxylated Coenzyme A thioesters such as malonyl-CoA and (2S)-methylmalonyl-CoA. The productivity of polyketide fermentation processes in natural and heterologous hosts is frequently limited by the availability of these precursors in vivo. We describe a metabolic engineering strategy to enhance both the yield and volumetric productivity of polyketide biosynthesis. The genes matB and matC from Rhizobium trifolii encode a malonyl-CoA synthetase and a putative dicarboxylate transport protein, respectively. These proteins can directly convert exogenous malonate and methylmalonate into their corresponding CoA thioesters with an ATP requirement of 2 mol per mol of acyl-CoA produced. Heterologous expression of matBC in a recombinant strain of Streptomyces coelicolor that produces the macrolactone 6-deoxyerythronolide B results in a 300% enhancement of macrolactone titers. The unusual efficiency of the bioconversion is illustrated by the fact that approximately one-third of the methylmalonate units added to the fermentation medium are converted into macrolactones. The direct conversion of inexpensive feedstocks such as malonate and methylmalonate into polyketides represents the most carbon- and energy-efficient route to these high value natural products and has implications for cost-effective fermentation of numerous commercial and development-stage small molecules.


Asunto(s)
Proteínas Bacterianas , Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Ingeniería Genética/métodos , Streptomyces/genética , Streptomyces/metabolismo , Acilcoenzima A/biosíntesis , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácido Metilmalónico/farmacología , Rhizobium/genética , Streptomyces/efectos de los fármacos
6.
J Am Chem Soc ; 123(11): 2495-502, 2001 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-11456917

RESUMEN

Streptomyces coelicolor CH999/pJRJ2 harbors a plasmid encoding DEBS(KS1 degrees ), a mutant form of 6-deoxyerythronolide B synthase that is blocked in the formation of 6-deoxyerythronolide B (1, 6-dEB) due to a mutation in the active site of the ketosynthase (KS1) domain that normally catalyzes the first polyketide chain elongation step of 6-dEB biosynthesis. Administration of (2E,4S,5R)-2,4-dimethyl-5-hydroxy-2-heptenoic acid, N-acetylcysteamine thioester (6) an unsaturated triketide analogue of the natural triketide chain elongation intermediate to cultures of S. coelicolor CH999/pJRJ2 results in formation of a 16-membered macrolactone, which is isolated in the hemiketal form 33. The formation of the octaketide 33 indicates that the triketide substrate has been processed by DEBS module 2 as if it were a diketide analogue. The substrate specificity of this novel reaction has been explored by the incubation of three additional analogues of the unsaturated triketide 6, compounds 18, 31, and 32, with S. coelicolor CH999/pJRJ2, resulting in the formation of the corresponding macrolactones 34, 35, and 36. By contrast, the unsaturated triketide 10, lacking a methyl group at C-2, did not give rise to any detectable macrolactone product when incubated with S. coelicolor CH999/pJRJ2.


Asunto(s)
Antibacterianos/biosíntesis , Complejos Multienzimáticos/fisiología , Macrólidos , Conformación Molecular , Streptomyces/metabolismo
7.
J Am Chem Soc ; 123(27): 6465-74, 2001 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-11439032

RESUMEN

6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) that catalyzes the biosynthesis of 6-deoxyerythronolide B (6-dEB), the aglycon precursor of the antibiotic erythromycin. The biosynthesis of 6-dEB exemplifies the extraordinary substrate- and stereo-selectivity of this family of multifunctional enzymes. Paradoxically, DEBS has been shown to be an attractive scaffold for combinatorial biosynthesis, indicating that its constituent modules are also very tolerant of unnatural substrates. By interrogating individual modules of DEBS with a panel of diketides activated as N-acetylcysteamine (NAC) thioesters, it was recently shown that individual modules have a marked ability to discriminate among certain diastereomeric diketides. However, since free NAC thioesters were used as substrates in these studies, the modules were primed by a diffusive process, which precluded involvement of the covalent, substrate-channeling mechanism by which enzyme-bound intermediates are directly transferred from one module to the next in a multimodular PKS. Recent evidence pointing to a pivotal role for protein-protein interactions in the substrate-channeling mechanism has prompted us to develop novel assays to reassess the steady-state kinetic parameters of individual DEBS modules when primed in a more "natural" channeling mode by the same panel of diketide substrates used earlier. Here we describe these assays and use them to quantify the kinetic benefit of linker-mediated substrate channeling in a modular PKS. This benefit can be substantial, especially for intrinsically poor substrates. Examples are presented where the k(cat) of a module for a given diketide substrate increases >100-fold when the substrate is presented to the module in a channeling mode as opposed to a diffusive mode. However, the substrate specificity profiles for individual modules are conserved regardless of the mode of presentation. By highlighting how substrate channeling can allow PKS modules to effectively accept and process intrinsically poor substrates, these studies provide a rational basis for examining the enormous untapped potential for combinatorial biosynthesis via module rearrangement.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteína Transportadora de Acilo/síntesis química , Proteína Transportadora de Acilo/metabolismo , Dominio Catalítico , Transporte de Electrón , Cinética , Péptidos/metabolismo , Unión Proteica , Ingeniería de Proteínas/métodos , Especificidad por Sustrato
8.
Bioorg Med Chem ; 9(6): 1467-77, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11408165

RESUMEN

The mevalonate-independent biosynthetic pathway to isopentenyl diphosphate and dimethylallyl diphosphate, the universal precursors to the isoprenoids, operates in eubacteria, including Escherichia coli, in algae, and in the plastids of higher plants. A search of the Sanger Centre Streptomyces coelicolor genome database revealed open reading frames with ca. 40--50% identity at the deduced amino acid level to the first three E. coli enzymes of this pathway, corresponding to deoxyxylulose phosphate synthase, deoxyxylulose phosphate reductoisomerase and 2-C-methyl erythritol 4-phosphate cytidylyltransferase. The S. coelicolor genes have been cloned and expressed in E. coli, and the recombinant proteins characterized physically and kinetically. The presence of the corresponding enzyme activities in extracts of S. coelicolor CH999 further supports the operation of the mevalonate-independent pathway in this organism.


Asunto(s)
Proteínas Bacterianas/genética , Ácido Mevalónico/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transferasas/genética , Transferasas/metabolismo
9.
Bioorg Med Chem Lett ; 11(12): 1477-9, 2001 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-11412964

RESUMEN

Incubation of chirally deuterated NADPH with 6-deoxyerythronolide B synthase (DEBS) modules 5 and module 6 and analysis of the derived triketide lactones established that the two ketoreductase domains, KR5 and KR6, are both specific for the 4-pro-S hydride of the nicotinamide cofactor.


Asunto(s)
Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Complejos Multienzimáticos/metabolismo , NADP/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Dominio Catalítico , Deuterio , Eritromicina/química , Cromatografía de Gases y Espectrometría de Masas , Complejos Multienzimáticos/química , Oxidación-Reducción , Estructura Terciaria de Proteína , Especificidad por Sustrato
11.
Nat Struct Biol ; 8(7): 641-8, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11427897

RESUMEN

The YgbP protein of Escherichia coli encodes the enzyme 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) synthetase, a member of the cytidyltransferase family of enzymes. CDP-ME is an intermediate in the mevalonate-independent pathway for isoprenoid biosynthesis in a number of prokaryotic organisms, algae, the plant plastids and the malaria parasite. Because vertebrates synthesize isoprenoid precursors using a mevalonate pathway, CDP-ME synthetase and other enzymes of the mevalonate-independent pathway for isoprenoid production represent attractive targets for the structure-based design of selective antibacterial, herbicidal and antimalarial drugs. The high-resolution structures of E. coli CDP-ME synthetase in the apo form and complexed with both CTP-Mg2+ and CDP-ME-Mg2+ reveal the stereochemical principles underlying both substrate and product recognition as well as catalysis in CDP-ME synthetase. Moreover, these complexes represent the first experimental structures for any cytidyltransferase with both substrates and products bound.


Asunto(s)
Eritritol/análogos & derivados , Escherichia coli/enzimología , Ácido Mevalónico/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Fosfatos de Poliisoprenilo/biosíntesis , Apoenzimas/antagonistas & inhibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Citidina Difosfato/análogos & derivados , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , Dimerización , Diseño de Fármacos , Eritritol/metabolismo , Escherichia coli/genética , Modelos Moleculares , Mutación/genética , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Fosfatos de Azúcar/metabolismo
12.
Biochemistry ; 40(8): 2326-31, 2001 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11327852

RESUMEN

Polyketide synthases (PKSs) have represented fertile targets for rational manipulation via protein engineering ever since their modular architecture was first recognized. However, the mechanistic principles by which biosynthetic intermediates are sequentially channeled between modules remain poorly understood. Here we demonstrate the importance of complementarity in a remarkably simple, repetitive structural motif within these megasynthases that has been implicated to affect intermodular chain transfer [Gokhale, R. S., et al. (1999) Science 284, 482]. The C- and N-terminal ends of adjacent PKS polypeptides are capped by short peptides of 20-40 residues. Mismatched sequences abolish intermodular chain transfer without affecting the activity of individual modules, whereas matched sequences can facilitate the channeling of intermediates between ordinarily nonconsecutive modules. Thus, in addition to substrate-PKS interactions and domain-domain interactions, these short interpolypeptide sequences represent a third determinant of selective chain transfer that must be taken into consideration in the protein engineering of PKSs. Preliminary biophysical studies on synthetic peptide mimics of these linkers suggest that they may adopt coiled-coil conformations.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Ciclohexanonas/antagonistas & inhibidores , Disacáridos/antagonistas & inhibidores , Disacáridos/biosíntesis , Eritromicina/análogos & derivados , Eritromicina/química , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/farmacología , Ingeniería de Proteínas , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
13.
Science ; 291(5509): 1790-2, 2001 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-11230695

RESUMEN

The macrocyclic core of the antibiotic erythromycin, 6-deoxyerythronolide B (6dEB), is a complex natural product synthesized by the soil bacterium Saccharopolyspora erythraea through the action of a multifunctional polyketide synthase (PKS). The engineering potential of modular PKSs is hampered by the limited capabilities for molecular biological manipulation of organisms (principally actinomycetes) in which complex polyketides have thus far been produced. To address this problem, a derivative of Escherichia coli has been genetically engineered. The resulting cellular catalyst converts exogenous propionate into 6dEB with a specific productivity that compares well with a high-producing mutant of S. erythraea that has been incrementally enhanced over decades for the industrial production of erythromycin.


Asunto(s)
Proteínas Bacterianas , Eritromicina/biosíntesis , Escherichia coli/genética , Complejos Multienzimáticos/genética , Saccharopolyspora/genética , Acilcoenzima A/metabolismo , Clonación Molecular , Eritromicina/análogos & derivados , Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Saccharopolyspora/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Transformación Bacteriana
14.
Biochemistry ; 39(34): 10514-20, 2000 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-10956042

RESUMEN

The priming of many modular polyketide synthases is catalyzed by a loading acyltransferase-acyl carrier protein (AT(L)-ACP(L)) didomain which initiates polyketide biosynthesis by transferring a primer unit to the ketosynthase domain of the first module. Because the AT(L) domain influences the choice of the starter unit incorporated into the polyketide backbone, its specificity is of considerable interest. The AT(L)-ACP(L) didomain of the 6-deoxyerythronolide B synthase (DEBS) was functionally expressed in Escherichia coli. Coexpression of the Sfp phosphopantetheinyl transferase from Bacillus subtilis in E. coli leads to efficient posttranslational modification of the ACP(L) domain with a phosphopantetheine moiety. Competition experiments were performed with the holo-protein to determine the relative rates of incorporation of a variety of unnatural substrates in the presence of comparable concentrations of labeled acetyl-CoA. Our results showed that the loading didomain of DEBS can accept a surprisingly broad range of substrates, although it exhibits a preference for unbranched alkyl chain substrates over branched alkyl chain, polar, aromatic, and charged substrates. In particular, its tolerance toward acetyl- and butyryl-CoA is unexpectedly strong. The studies described here present an attractive prototype for the expression, analysis, and engineering of acyltransferase domains in modular polyketide synthases.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Secuencia de Bases , Cartilla de ADN/genética , Escherichia coli/genética , Complejos Multienzimáticos/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
15.
J Biol Chem ; 275(33): 25533-9, 2000 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-10825154

RESUMEN

The 2.5-A resolution crystal structure of recombinant aristolochene synthase from the blue cheese mold, Penicillium roqueforti, is the first of a fungal terpenoid cyclase. The structure of the enzyme reveals active site features that participate in the cyclization of the universal sesquiterpene cyclase substrate, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. Metal-triggered carbocation formation initiates the cyclization cascade, which proceeds through multiple complex intermediates to yield one exclusive structural and stereochemical isomer of aristolochene. Structural homology of this fungal cyclase with plant and bacterial terpenoid cyclases, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of terpene biosynthesis.


Asunto(s)
Proteínas Fúngicas/química , Isomerasas/química , Penicillium/enzimología , Sitios de Unión , Cristalografía por Rayos X , Electrones , Evolución Molecular , Isomerasas/aislamiento & purificación , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química
16.
Arch Biochem Biophys ; 376(2): 354-64, 2000 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-10775423

RESUMEN

Aristolochene synthase catalyzes the cyclization of farnesyl diphosphate (6) to (+)-aristolochene (1). The Aspergillus terreus enzyme has been purified 75-fold to homogeneity in six steps. Based on the sequence of 3 internal peptides obtained by Lys-C digestion of the native protein, a set of degenerate PCR primers was used to amplify a 550-bp segment of cDNA corresponding to a portion of the aristolochene synthase transcript. A second round of PCR using specific primers was used to prepare a (32)P-labeled 180-bp segment, which was used to screen an A. terreus cDNA library prepared using lambdaZapII, resulting in the identification and sequencing of the A. terreus aristolochene synthase cDNA. Aristolochene synthase was encoded by an open reading frame (ORF) of 960 bp, corresponding to a protein of 320 amino acids with a predicted M(D) of 36,480. Comparison of the A. terreus ORF with the sequence of the previously described aristolochene synthase from Penicillium roqueforti revealed a 66% of identity at the nucleic acid level and a 70% identity at the deduced amino acid level between the aristolochene synthases from the two different fungal sources. PCR was used to insert the A. terreus aristolochene synthase gene into the T7lac expression vector pET11a. Cloning of the resultant construct into Escherichia coli XL1-Blue and subcloning into the expression host E. coli BL21(DE3)/pLysS gave, after induction with IPTG, soluble aristolochene synthase as 5-10% of total protein. The recombinant aristolochene synthase, which was purified 13-fold to homogeneity, appeared to be identical in all respects with the native A. terreus enzyme, displaying essentially the same steady-state kinetic parameters, with a K(m) of 15 nM and k(cat) 0.015 s(-1). Using PCR to amplify the aristolochene synthase gene (Aril) from A. terreus genomic DNA revealed the presence of 2 introns, identical in relative location but different in both sequence and length compared to the corresponding Ari1 gene of P. roqueforti.


Asunto(s)
Aspergillus/enzimología , Aspergillus/genética , Escherichia coli/genética , Isomerasas/aislamiento & purificación , Isomerasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , ADN Complementario/genética , Expresión Génica , Genes Fúngicos/genética , Intrones/genética , Isomerasas/química , Isomerasas/genética , Cinética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Penicillium/enzimología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Solubilidad , Termodinámica
17.
Bioorg Med Chem Lett ; 10(2): 105-7, 2000 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-10673090

RESUMEN

Incubation of epicubenol synthase with farnesyl pyrophosphate in the presence of 11.1 atom% H2(18)O gave epicubenol (2) in which the hydroxyl oxygen atom was shown to be derived exclusively from water, as established by GC-selected ion monitoring MS of the derived TMS-epicubenol derivative (15).


Asunto(s)
Alcoholes/química , Liasas Intramoleculares/química , Isomerasas/química , Sesquiterpenos/química , Espectrometría de Masas , Estructura Molecular , Isótopos de Oxígeno , Streptomyces/enzimología
19.
Bioorg Med Chem Lett ; 9(8): 1127-32, 1999 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-10328298

RESUMEN

The 10-cyclopropylidene analog of farnesyl diphosphate was shown to be a mechanism-based inhibitor of trichodiene synthase with an inactivation rate (k(inact)) of 0.010 +/- 0.0003 min(-1) and an apparent Ki of 663 +/- 75 nM. The presence of three anomalous sesquiterpene products detected in incubation mixtures indicate that the compound also serves as a substrate of the enzyme.


Asunto(s)
Liasas de Carbono-Carbono/antagonistas & inhibidores , Liasas de Carbono-Carbono/farmacocinética , Modelos Químicos , Factores de Tiempo
20.
Science ; 284(5413): 482-5, 1999 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-10205055

RESUMEN

Modular polyketide synthases catalyze the biosynthesis of medicinally important natural products through an assembly-line mechanism. Although these megasynthases display very precise overall selectivity, we show that their constituent modules are remarkably tolerant toward diverse incoming acyl chains. By appropriate engineering of linkers, which exist within and between polypeptides, it is possible to exploit this tolerance to facilitate the transfer of biosynthetic intermediates between unnaturally linked modules. This protein engineering strategy also provides insights into the evolution of modular polyketide synthases.


Asunto(s)
Lactonas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Ingeniería de Proteínas , Secuencia de Aminoácidos , Catálisis , Escherichia coli/enzimología , Escherichia coli/genética , Evolución Molecular , Genes Bacterianos , Macrólidos/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...