Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 333: 116785, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758396

RESUMEN

Globally, invasive grasses are a major threat to protected areas (PAs) due to their ability to alter community structure and function, reduce biodiversity, and alter fire regimes. However, there is often a mismatch between the threat posed by invasive grasses and the management response. We document a case study of the spread and management of the ecosystem-transforming invasive grass, Andropogon gayanus Kunth. (gamba grass), in Litchfield National Park; an iconic PA in northern Australia that contains significant natural, cultural and social values. We undertook helicopter-based surveys of A. gayanus across 143,931 ha of Litchfield National Park in 2014 and 2021-2022. We used these data to parametrise a spatially-explicit spread model, interfaced with a management simulation model to predict 10-year patterns of spread, and associated management costs, under three scenarios. Our survey showed that between 2014 and 2021-22 A. gayanus spread by 9463 ha, and 47%. The gross A. gayanus infestation covered 29,713 ha of the total survey area, making it the largest national park infestation in Australia. A. gayanus had not been locally eradicated within the Park's small existing 'gamba grass eradication zone', and instead increased by 206 ha over the 7-year timeframe. Our modelled scenarios predict that without active management A. gayanus will continue spreading, covering 42,388 ha of Litchfield within a decade. Alternative scenarios predict that: (i) eradicating A. gayanus in the small existing eradication zone would likely protect 18% of visitor sites, and cost ∼AU$825,000 over 5 years - more than double the original predicted cost in 2014; or (ii) eradicating A. gayanus in a much larger eradication zone would likely protect 86% of visitor sites and several species of conservation significance, and cost ∼AU$6.6 million over 5 years. Totally eradicating A. gayanus from the Park is no longer viable due to substantial spread since 2014. Our study demonstrates the value of systematic landscape-scale surveys and costed management scenarios to enable assessment and prioritisation of weed management. It also demonstrates the increased environmental and financial costs of delaying invasive grass management, and the serious threat A. gayanus poses to PAs across northern Australia.


Asunto(s)
Andropogon , Poaceae , Ecosistema , Parques Recreativos , Australia , Conservación de los Recursos Naturales
2.
Sci Rep ; 10(1): 14294, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868852

RESUMEN

Rivers around the world are threatened by altered flow due to water resource development. Altered flow can change food webs and impact riverine energetics. The Fitzroy River, in northern Australia, is targeted for development but uncertainty remains about the sources of carbon supporting the food web, particularly in the lowlands-the region most likely to be impacted by water extraction. This study used stable isotopes to investigate if algal biofilm is the main carbon source sustaining fish in lowland habitats. We also sought evidence that large-bodied migratory fish were transporting remote carbon around the system. Our results revealed that local algal biofilm carbon was the dominant source of energy sustaining fish in wet season floodplain habitats, but that fish in main-channel pools during the dry season were increasingly dependent on other carbon sources, such as leaf litter or phytoplankton. We found no evidence that large-bodied fish were transporting remote carbon from the floodplain or estuary into the lower main-channel of the river. We recommend that water planners take a precautionary approach to policy until sufficient food web evidence is amassed.

3.
Sci Rep ; 10(1): 2880, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075991

RESUMEN

Globally, mining activities have been responsible for the contamination of soils, surface water and groundwater. Following mine closure, a key issue is the management of leachate from waste rock accumulated during the lifetime of the mine. At Ranger Uranium Mine in northern Australia, magnesium sulfate (MgSO4) leaching from waste rock has been identified as a potentially significant surface and groundwater contaminant which may have adverse affects on catchment biota. The primary objective of this study was to determine the effect of elevated levels of MgSO4 on two riparian trees; Melaleuca viridiflora and Alphitonia excelsa. We found that tolerance to MgSO4 was species-specific. M. viridiflora was tolerant to high concentrations of MgSO4 (15,300 mg l-1), with foliar concentrations of ions suggesting plants regulate uptake. In contrast, A. excelsa was sensitive to elevated concentrations of MgSO4 (960 mg l-1), exhibiting reduced plant vigour and growth. This information improves our understanding of the toxicity of MgSO4 as a mine contaminant and highlights the need for rehabililitation planning to mitigate impacts on some tree species of this region.

4.
Oecologia ; 170(4): 909-16, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22692384

RESUMEN

While seasonal redistribution of fine root biomass in response to fluctuations in groundwater level is often inferred in phreatophytic plants, few studies have observed the in situ growth dynamics of deep roots relative to those near the surface. We investigated the root growth dynamics of two Banksia species accessing a seasonally dynamic water table and hypothesized that root growth phenology varied with depth, i.e. root growth closest to the water table would be influenced by water table dynamics rather than surface micro-climate. Root in-growth bags were used to observe the dynamics of root growth at different soil depths and above-ground growth was also assessed to identify whole-plant growth phenology. Root growth at shallow depths was found to be in synchrony with above-ground growth phenophases, following increases in ambient temperature and soil water content. In contrast, root growth at depth was either constant or suppressed by saturation. Root growth above the water table and within the capillary fringe occurred in all seasons, corresponding with consistent water availability and aerobic conditions. However, at the water table, a seasonal cycle of root elongation with drawdown in summer followed by trimming in response to water table rise and saturation in winter, was observed. The ability to grow roots year-round at the capillary fringe and redistribute fine root biomass in response to groundwater drawdown is considered critical in allowing phreatophytes, in seasonally water-limited environments, to maintain access to groundwater throughout the year.


Asunto(s)
Raíces de Plantas/fisiología , Proteaceae/fisiología , Agua , Adaptación Fisiológica , Biomasa , Microclima , Estaciones del Año
5.
Plant Cell Environ ; 32(1): 64-72, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19021880

RESUMEN

This study investigated the interspecific differences in vulnerability to xylem embolism of four phreatophytes - two facultative phreatophytes (Banksia attenuata and B. menziesii) and two obligate phreatophytes (B. ilicifolia and B. littoralis). Species differences at the same position along an ecohydrological gradient on the Gnangara Groundwater Mound, Western Australia were determined in addition to intraspecific differences to water stress between populations in contrasting ecohydrological habitats. Stem- and leaf-specific hydraulic conductivity, as well as Huber values (ratio of stem to leaf area), were also determined to support these findings. We found that where water is readily accessible, there were no interspecific differences in vulnerability to water stress. In contrast both facultative phreatophyte species were more resistant to xylem embolism at the more xeric dune crest site than at the wetter bottom slope site. B. ilicifolia did not differ in vulnerability to embolism, supporting its classification as an obligate phreatophyte. Other measured hydraulic traits (K(S), K(L) and Huber value) showed no adaptive responses, although there was a tendency for plants at the wetter site to have higher K(S) and K(L). This study highlights the influence site hydrological attributes can have on plant hydraulic architecture across species and environmental gradients.


Asunto(s)
Ecosistema , Transpiración de Plantas , Proteaceae/fisiología , Agua/fisiología , Deshidratación , Modelos Biológicos , Especificidad de la Especie , Australia Occidental , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...