Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(7): 1870-1873, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221787

RESUMEN

We report on the generation of a passive carrier-envelope phase (CEP) stable 1.7-cycle pulse in the mid-infrared by adiabatic difference frequency generation. With sole material-based compression, we achieve a sub-2-cycle 16-fs pulse at a center wavelength of 2.7 µm and measured a CEP stability of <190 mrad root mean square. The CEP stabilization performance of an adiabatic downconversion process is characterized for the first time, to the best of our knowledge.

2.
Opt Express ; 30(14): 24186-24206, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236979

RESUMEN

Despite the popularity and ubiquity of the tilted-pulse-front technique for single-cycle terahertz (THz) pulse generation, there is a deficit of experimental studies comprehensively mapping out the dependence of the performance on key setup parameters. The most critical parameters include the pulse-front tilt, the effective length of the pump pulse propagation within the crystal as well as effective length over which the THz beam interacts with the pump before it spatially walks off. Therefore, we investigate the impact of these parameters on the conversion efficiency and the shape of the THz beam via systematically scanning the 5D parameter space spanned by pump fluence, pulse-front-tilt, crystal-position (2D), and the pump size experimentally. We verify predictions so far only made by theory regarding the optimum interaction lengths and map out the impact of cascading on the THz radiation generation process. Furthermore, distortions imposed on the spatial THz beam profile for larger than optimum interaction lengths are observed. Finally, we identify the most sensitive parameters and, based on our findings, propose a robust optimization strategy for tilted-pulse-front THz setups. These findings are relevant for all THz strong-field applications in high demand of robust high-energy table-top single-cycle THz sources such as THz plasmonics, high-harmonic generation in solids as well as novel particle accelerators and beam manipulators.

3.
Opt Lett ; 47(4): 822-825, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167534

RESUMEN

We demonstrate a 41.6 MHz, 1.3 ps, 140 pJ Ho:fiber oscillator using a nonlinear amplifying loop mirror (NALM) as saturable absorber. The oscillator is constructed entirely with polarization-maintaining (PM) fibers, is tunable with a center wavelength between 2035 nm and 2075 nm, and can be synchronized to an external RF reference. For our application of Ho:YLF amplifier seeding for dielectric electron acceleration, the laser is tuned to 2050 nm and synchronized to a stable RF reference with 45 fs rms timing jitter in the integration interval [10 Hz, 1 MHz]. We show long term synchronized operation and characterize the relative intensity noise (RIN) and timing jitter of the oscillator for two different Tm-fiber pump lasers.

4.
Opt Lett ; 46(4): 741-744, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577503

RESUMEN

We demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.72 µJ terahertz energy is obtained at a frequency of 0.5 THz with a 3 GHz bandwidth. A maximum internal optical-to-terahertz conversion efficiency of 0.16% is achieved, which is comparable with results achieved using periodically poled lithium niobate crystal. Neither photorefractive effects nor damage was observed with up to 900mJ/cm2, showing the great potential of Rb:PPKTP for multi-millijoule-level MC-THz generation.

5.
Opt Lett ; 45(7): 2050-2053, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32236065

RESUMEN

We report, to the best of our knowledge, the first mode-locked operation of Yb:YLF gain media at cryogenic temperatures. A saturable Bragg reflector was used for initiating and sustaining mode locking. Once aligned, the system was self-starting and quite robust. Using output couplers in the 10-40% range, 3-5 ps long pulses with an average power as high as 28 W were achieved. The repetition rate was 46.45 MHz, and the corresponding pulse energy and peak power were as high as 602 nJ and 126.5 kW, respectively. The central wavelength of the mode-locked pulses could be tuned in the 1013.5-1019 nm range using an intracavity birefringent filter. The achieved output power performance is two to three orders of magnitude higher than previous room-temperature Yb:YLF systems.

6.
Opt Express ; 28(2): 2466-2479, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121936

RESUMEN

We report, what is to our knowledge, the highest average power obtained directly from a Yb:YLF regenerative amplifier to date. A fiber front-end provided seed pulses with an energy of 10 nJ and stretched pulsewidth of around 1 ns. The bow-tie type Yb:YLF ring amplifier was pulse pumped by a kW power 960 nm fiber coupled diode-module. By employing a pump spot diameter of 2.1 mm, we could generate 20-mJ pulses at repetition rates between 1 Hz and 3.5 kHz, 10 mJ pulses at 5 kHz, 6.5 mJ pulses at 7.5 kHz and 5 mJ pulses at 10 kHz. The highest average power (70 W) was obtained at 3.5 kHz operation, at an absorbed pump power level of 460 W, corresponding to a conversion efficiency of 15.2%. Despite operating in the unsaturated regime, usage of a very stable seed source limited the power fluctuations below 2% rms in a 5 minute time interval. The output pulses were centered around 1018.6 nm with a FWHM bandwidth of 2.1 nm, and could be compressed to below 1-ps pulse duration. The output beam maintained a TEM00 beam profile at all power levels, and possesses a beam quality factor better than 1.05 in both axis. The relatively narrow bandwidth of the current seed source and the moderate gain available from the single Yb:YLF crystal was the main limiting factor in this initial study.

7.
Opt Express ; 28(3): 3171-3178, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32121990

RESUMEN

We demonstrate a novel, energy-efficient, cost-effective simple method for seeding CEP-stable OPCPAs. We couple the CEP-stable idler of a broadband OPCPA into a hollow core Kagome fiber thus compensating for the angular chirp. We obtain either relatively narrow bandwidths with ∼36% coupling efficiency or quarter-octave spanning bandwidths with ∼2.2% coupling efficiency. We demonstrate spectral compressibility, good beam quality and CEP stability. Our source is an ideal seed for high-energy, high-average power, CEP-stable few-cycle OPCPA pulses around 2 µm, which can drive the generation of coherent soft X-ray radiation in the water window spectral region via HHG.

8.
Opt Express ; 27(25): 36562-36579, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31873432

RESUMEN

We present, what is to our knowledge, the first detailed lasing investigation of cryogenic Yb:YLF gain media in the E//a-axis. Compared to the usually employed E//c-axis, the a-axis of Yb:YLF provides a much broader and smooth gain profile, but this comes at the expense of reduced gain product. We have shown that, despite the lower gain, which (i) increases susceptibility to cavity losses, (ii) raises lasing threshold, and (iii) inflates thermal load, efficient and high-power lasing could be achieved in the E//a axis as well. A record continuous-wave (cw) powers above 300 W, cw slope efficiencies of 73%, and a tuning range covering the 995-1020.5 nm region were demonstrated. In quasi-cw lasing experiments, via minimization of thermal effects, slope efficiencies can be scaled up to 85%. In gain-switched operation, sub-50-µs long pulses with a peak power exceeding 2.5 kW at multi-kHz repetition rate were attained. We measured a beam quality factor below 1.5 for laser average powers up to 100 W and below 3 for laser average powers up to 300 W. Power scaling limits due to thermal effects, laser dynamics in pulsed pumping, and multicolor lasing operation potential were also investigated. The detailed results presented in this manuscript will pave the way towards development of high-power and high-energy Yb:YLF oscillators and amplifiers with sub-500-fs pulse duration.

9.
Nat Photonics ; 12(6): 336-342, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29881446

RESUMEN

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radio-frequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the 6D-phase-space of ultrashort electron bunches. With this single device, powered by few-micro-Joule, single-cycle, 0.3 THz pulses, we demonstrate record THz-acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT/m strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of THz-based electron accelerators, manipulators and diagnostic tools enabling science beyond current resolution frontiers with transformative impact.

10.
Opt Lett ; 43(2): 178-181, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29328232

RESUMEN

We study the effect of pump-seed timing fluctuations on the carrier-envelope phase (CEP) of signal and idler pulses emerging from an OP(CP)A. A simple analytical model is derived in order to provide an intuitive explanation of the origin of CEP fluctuations, while split-step simulations are performed to cover a broad range of different seeding schemes. Finally, we compare the simulation results with real observations of the CEP of idler pulses generated by an OPA. The quantitative model presented provides a key tool for designing the next generation of low-noise CEP-stable OP(CP)A-based sources.

11.
Opt Express ; 24(22): 25169-25180, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828455

RESUMEN

We demonstrate experimentally for the first time a ~40-µJ two-octave-wide passively carrier-envelope phase (CEP)-stable parametric front-end for seeding an ytterbium (Yb)-pump-based, few-optical-cycle, high-energy optical parametric waveform synthesizer. The system includes a CEP-stable white-light continuum and two-channel optical parametric chirped pulse amplifiers (OPCPAs) in the near- and mid-infrared spectral regions spanning altogether a two-octave-wide spectrum driven by a regenerative amplifier. The output pulses are compressed and fully characterized to demonstrate the well-behaved spectral phase of this seed source.

12.
Opt Express ; 24(18): 21059-69, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607709

RESUMEN

We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.

13.
Opt Express ; 24(9): 9905-21, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137602

RESUMEN

We present a new chromatic numerical approach to simulate the amplification of laser pulses in multipass laser amplifiers. This enables studies on spectral effects such as gain narrowing and spectral shaping with optical elements expressed by a transmission transfer function. We observe good agreement between our simulations and measurements with a Ho:YLF regenerative amplifier (RA). To demonstrate the capabilities of our simulation model, we numerically integrate an intra-cavity etalon in this laser and find optimum etalon parameters that enhance the peak power of the output pulses up to 65%.

14.
Opt Lett ; 41(6): 1114-7, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977647

RESUMEN

We demonstrate intracavity gain shaping inside a 2 µm Ho:YLF regenerative amplifier with a spectral bandwidth of 2.9 nm broadened to 5.4 nm, corresponding to Fourier-limited pulses of 1 ps duration. The intracavity gain shaping is achieved by using a simple etalon, which acts as a frequency-selective filter. The output of the regenerative amplifier is amplified by a single-pass amplifier, and we achieve total energy of 2.2 mJ and pulse duration of 2.4 ps at 1 kHz with pulse fluctuations <1%. The amplifier chain is seeded by a home-built mode-locked holmium-doped fiber oscillator.

15.
Opt Lett ; 40(23): 5427-30, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625017

RESUMEN

We demonstrate a Ho:YLF regenerative amplifier (RA) overcoming bifurcation instability and consequently achieving high extraction energies of 6.9 mJ at a repetition rate of 1 kHz with pulse-to-pulse fluctuations of 1.1%. Measurements of the output pulse energy, corroborated by numerical simulations, identify an operation point (OP) that allows high-energy pulse extraction at a minimum noise level. Complete suppression of the onset of bifurcation was achieved by gain saturation after each pumping cycle in the Ho:YLF crystal via lowering the repetition rate and cooling the crystal. Even for moderate cooling, a significant temperature dependence of the Ho:YLF RA performance was observed.

16.
Opt Lett ; 40(11): 2610-3, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26030570

RESUMEN

A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth.

17.
Opt Express ; 23(11): 13866-79, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072757

RESUMEN

We generate white light supercontinuum from slightly sub-picosecond pulses at 1.03 µm and 515 nm. We compare the spectra and stability for various crystals, focusing conditions and pulse durations, and determine the best parameters for sub-picosecond driver pulse duration. Comparing the experimental observations with the theory of white-light generation from Brodeur and Chin, it appears that in this particular range of pump pulse duration, two mechanisms interact and prevent a catastrophic collapse of the beam: multi-photon excitation (typical for ~100-fs-long pulses) and avalanche ionization (typical for >1-ps pulses). The two processes both manifest themselves in different experimental observations.

18.
Opt Express ; 22(20): 24752-62, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25322050

RESUMEN

A highly stable Yb:KYW based dual crystal regenerative amplifier is demonstrated, which generates at 1 kHz 6.5-mJ pulses before and up to 4.7-mJ sub-ps pulses after compression with multilayer-dielectric gratings, respectively. The stretcher is compact and based on chirped-fiber Bragg gratings. In continuous-wave operation, 20 W are extracted with a slope efficiency of 40%. The experimental data are in agreement with detailed simulations of the laser dynamics.

19.
Opt Lett ; 39(10): 2912-5, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978235

RESUMEN

We report on efficient broadband sum-frequency generation, converting a 140 THz near-infrared bandwidth to the visible regime with photon conversion efficiency greater than 90%. Using a 20-mm-long aperiodically adiabatively poled KTP crystal, the spectral range 660-990 nm was converted to 405-500 nm using a strong pump wave at 1030 nm. The photon conversion efficiency was confirmed to be 92±0.5% when pumped with an intensity of 0.94 GW/cm2. Our experimental results agreed very well with analytic predictions and numerical simulations.

20.
Opt Lett ; 37(2): 136-8, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22854445

RESUMEN

We report a narrow-linewidth, tunable, gain-switched Cr:ZnSe laser operating between 2255 and 2455 nm. The spectral width of the laser was reduced from 125 nm to 0.3 nm by using injection seeding. Seeding was achieved with a second tunable CW Cr:ZnSe laser. The output wavelength was varied by tuning the wavelength of the seed laser. The seeded oscillator produced as high as 157 µJ pulses with 598 µJ incident pump pulse energy at a repetition rate of 1 kHz. The slope efficiency was determined to be 26%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...