Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 44(1): 4, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38104054

RESUMEN

Brain-derived neurotrophic factor (BDNF) acting upon its receptor Neurotrophic tyrosine kinase receptor 2 (NTRK2, TRKB) plays a central role in the development and maintenance of synaptic function and activity- or drug-induced plasticity. TRKB possesses an inverted cholesterol recognition and alignment consensus sequence (CARC), suggesting this receptor can act as a cholesterol sensor. We have recently shown that antidepressant drugs directly bind to the CARC domain of TRKB dimers, and that this binding as well as biochemical and behavioral responses to antidepressants are lost with a mutation in the TRKB CARC motif (Tyr433Phe). However, it is not clear if this mutation can also compromise the receptor function and lead to behavioral alterations. Here, we observed that Tyr433Phe mutation does not alter BDNF binding to TRKB, or BDNF-induced dimerization of TRKB. In this line, primary cultures from embryos of heterozygous Tyr433Phe mutant mice (hTRKB.Tyr433Phe) are responsive to BDNF-induced activation of TRKB, and samples from adult mice do not show any difference on TRKB activation compared to wild-type littermates (TRKB.wt). The behavioral phenotype of hTRKB.Tyr433Phe mice is indistinguishable from the wild-type mice in cued fear conditioning, contextual discrimination task, or the elevated plus maze, whereas mice heterozygous to BDNF null allele show a phenotype in context discrimination task. Taken together, our results indicate that Tyr433Phe mutation in the TRKB CARC motif does not show signs of loss-of-function of BDNF responses, while antidepressant binding to TRKB and responses to antidepressants are lost in Tyr433Phe mutants, making them an interesting mouse model for antidepressant research.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Antidepresivos/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Mutación/genética
2.
Nat Neurosci ; 26(6): 1032-1041, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280397

RESUMEN

Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.


Asunto(s)
Antidepresivos , Alucinógenos , Dietilamida del Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sitios de Unión , Simulación de Dinámica Molecular , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Receptor trkB/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Antidepresivos/metabolismo , Regulación Alostérica , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Embrión de Mamíferos/citología , Neuronas/efectos de los fármacos , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/metabolismo , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacología
3.
Eur J Neurosci ; 57(6): 940-950, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740723

RESUMEN

Ketamine has been described as a fast-acting antidepressant, exerting effects in depressed patients and in preclinical models with a rapid onset of action. The typical antidepressant fluoxetine is known to induce plasticity in the adult rodent visual cortex, as assessed by a shift in ocular dominance, a classical model of brain plasticity, and a similar effect has been described for ketamine and its metabolite 2R,6R-hydroxynorketamine (R,R-HNK). Here, we demonstrate that ketamine (at 3 or 20 mg/kg) and R,R-HNK facilitated the shift in ocular dominance in monocularly deprived mice, after three injections, throughout the 7-day monocular deprivation regimen. Notably, the comparison between the treatments indicates a higher effect size of R,R-HNK compared with ketamine. Treatment with ketamine or R,R-HNK failed to influence the levels of perineuronal nets (PNNs) surrounding parvalbumin-positive interneurons. However, we observed in vitro that both ketamine and R,R-HNK are able to disrupt the tropomyosin-related kinase B (TRKB) interaction with the protein tyrosine phosphatase sigma (PTPσ), which upon binding to PNNs dephosphorylates TRKB. These results support a model where diverse drugs promote the reinstatement of juvenile-like plasticity by directly binding TRKB and releasing it from PTPσ regulation, without necessarily reducing PNNs deposits.


Asunto(s)
Ketamina , Animales , Ratones , Antidepresivos/farmacología , Depresión/metabolismo , Predominio Ocular , Interneuronas/metabolismo , Ketamina/farmacología , Parvalbúminas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Tropomiosina
4.
Prog Neurobiol ; 222: 102413, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682419

RESUMEN

Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Óxido Nítrico , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I , Receptor trkB/metabolismo , Tirosina
5.
Eur J Neurosci ; 53(10): 3311-3322, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33825223

RESUMEN

Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.


Asunto(s)
Colesterol , Proteínas Tirosina Quinasas Receptoras , Animales , Factor Neurotrófico Derivado del Encéfalo , Membrana Celular , Humanos , Ligandos , Ratones , Dominios Proteicos , Receptor trkB
6.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
7.
Eur J Neurosci ; 50(10): 3663-3673, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299115

RESUMEN

Heightened neuronal plasticity expressed during early postnatal life has been thought to permanently decline once critical periods have ended. For example, monocular deprivation is able to shift ocular dominance in the mouse visual cortex during the first months of life, but this effect is lost later in life. However, various treatments, such as the antidepressant fluoxetine, can reactivate a critical period-like plasticity in the adult brain. When monocular deprivation is supplemented with chronic fluoxetine administration, a major shift in ocular dominance is produced after the critical period has ended. In the current study, we characterized the temporal patterns of fluoxetine-induced plasticity in the adult mouse visual cortex, using in vivo optical imaging. We found that artificially induced plasticity in ocular dominance extended beyond the duration of the naturally occurring critical period and continued as long as fluoxetine was administered. However, this fluoxetine-induced plasticity period ended as soon as the drug was not given. These features of antidepressant-induced plasticity may be useful when designing treatment strategies involving long-term antidepressant treatment in humans.


Asunto(s)
Antidepresivos/farmacología , Fluoxetina/farmacología , Plasticidad Neuronal , Corteza Visual/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Tiempo , Corteza Visual/efectos de los fármacos
8.
J Comp Neurol ; 526(7): 1131-1147, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355945

RESUMEN

Extensive loss of noradrenaline-containing neurons and fibers is a nearly invariant feature of Alzheimer's Disease (AD). However, the exact noradrenergic contribution to cognitive and histopathological changes in AD is still unclear. Here, this issue was addressed following selective lesioning and intrahippocampal implantation of embryonic noradrenergic progenitors in developing rats. Starting from about 3 months and up to 12 months post-surgery, animals underwent behavioral tests to evaluate sensory-motor, as well as spatial learning and memory, followed by post-mortem morphometric analyses. At 9 months, Control, Lesioned and Lesion + Transplant animals exhibited equally efficient sensory-motor and reference memory performance. Interestingly, working memory abilities were seen severely impaired in Lesion-only rats and fully recovered in Transplanted rats, and appeared partly lost again 2 months after ablation of the implanted neuroblasts. Morphological analyses confirmed the almost total lesion-induced noradrenergic neuronal and terminal fiber loss, the near-normal reinnervation of the hippocampus promoted by the transplants, and its complete removal by the second lesion. Notably, the noradrenergic-rich transplants normalized also the nuclear expression of the transactive response DNA-binding protein 43 (TDP-43) in various hippocampal subregions, whose cytoplasmic (i.e., pathological) occurrence appeared dramatically increased as a result of the lesions. Thus, integrity of ascending noradrenergic inputs to the hippocampus may be required for the regulation of specific aspects of learning and memory and to prevent TDP-43 tissue pathology.


Asunto(s)
Lesiones Encefálicas/patología , Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Memoria a Corto Plazo/fisiología , Norepinefrina/metabolismo , Memoria Espacial/fisiología , Animales , Animales Recién Nacidos , Anticuerpos/toxicidad , Lesiones Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Dopamina beta-Hidroxilasa/inmunología , Femenino , Inmunotoxinas/toxicidad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Tiempo de Reacción/fisiología , Estadísticas no Paramétricas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...