Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668285

RESUMEN

To date, there have been no DNA-based metabarcoding studies into airborne fungi in tropical Sub-Saharan Africa. In this initial study, 10 air samples were collected onto Vaseline-coated acrylic rods mounted on drones flown at heights of 15-50 meters above ground for 10-15 min at three sites in Ghana. Purified DNA was extracted from air samples, the internal transcribed spacer (ITS) region was amplified using fungal-specific primers, and MinION third-generation amplicon sequencing was undertaken with downstream bioinformatics analyses utilizing GAIA cloud-based software (at genus taxonomic level). Principal coordinate analyses based on Bray-Curtis beta diversity dissimilarity values found no clear evidence for the structuring of fungal air communities, nor were there significant differences in alpha diversity, based on geographic location (east vs. central Ghana), underlying vegetation type (cocoa vs. non-cocoa), or height above ground level (15-23 m vs. 25-50 m), and despite the short flight times (10-15 min), ~90 operational taxonomic units (OTUs) were identified in each sample. In Ghanaian air, fungal assemblages were skewed at the phylum taxonomic level towards the ascomycetes (53.7%) as opposed to basidiomycetes (24.6%); at the class level, the Dothideomycetes were predominant (29.8%) followed by the Agaricomycetes (21.8%). The most common fungal genus in Ghanaian air was cosmopolitan and globally ubiquitous Cladosporium (9.9% of reads). Interestingly, many fungal genera containing economically important phytopathogens of tropical crops were also identified in Ghanaian air, including Corynespora, Fusarium, and Lasiodiplodia. Consequently, a novel loop-mediated isothermal amplification (LAMP) assay, based on translation elongation factor-1α sequences, was developed and tested for rapid, sensitive, and specific detection of the fungal phytopathogenic genus Lasiodiplodia. Potential applications for improved tropical disease management are considered.

2.
Pest Manag Sci ; 80(5): 2453-2460, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37759372

RESUMEN

BACKGROUND: Detection of the inoculum of phytopathogens greatly assists in the management of diseases, but is difficult for pathogens with airborne fungal propagules. Here, we present experiments to determine the abundance and distribution frequencies of the ascospores of Leptosphaeria (Plenodomus) species that were collected on the tapes of volumetric Hirst-type traps near oilseed rape fields in Poznan, Poland and Harpenden, UK. Fungal detection and species discrimination were achieved using a SYBR-Green quantitative polymerase chain reaction (qPCR) with two different pairs of primers previously reported to differentiate Leptosphaeria maculans (Plenodomus lingam) or L. biglobosa (P. biglobosus). RESULTS: Detection was successful even at fewer than five spores per m3 of air. The primer pairs differed in the correlation coefficients obtained between DNA yields and the daily abundance of ascospores that were quantified by microscopy on duplicate halves of the spore trap tapes. Important differences in the specificity and sensitivity of the published SYBR-Green assays were also found, indicating that the Liu primers did not detect L. biglobosa subclade 'canadensis', whereas the Mahuku primers detected L. biglobosa subclade 'canadensis' and also the closely related Plenodomus dezfulensis. CONCLUSIONS: Comparisons confirmed that application of qPCR assays to spore trap samples can be used for the early detection, discrimination and quantification of aerially dispersed L. maculans and L. biglobosa propagules before leaf spot symptoms are visible in winter oilseed rape fields. The specificity of the primers must be taken into consideration because the final result will greatly depend on the local population of the pathogen. © 2023 Society of Chemical Industry.


Asunto(s)
Brassica napus , Leptosphaeria , Phoma , Enfermedades de las Plantas/microbiología , Esporas Fúngicas
3.
Phytopathology ; 111(3): 582-592, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32748733

RESUMEN

Eyespot, caused by the related fungal pathogens Oculimacula acuformis and O. yallundae, is an important cereal stem-base disease in temperate parts of the world. Both species are dispersed mainly by splash-dispersed conidia but are also known to undergo sexual reproduction, yielding apothecia containing ascospores. Field diagnosis of eyespot can be challenging, with other pathogens causing similar symptoms, which complicates eyespot management strategies. Differences between O. acuformis and O. yallundae (e.g., host pathogenicity and fungicide sensitivity) require that both be targeted for effective disease management. Here, we develop and apply two molecular methods for species-specific and mating-type (MAT1-1 or MAT1-2) discrimination of O. acuformis and O. yallundae isolates. First, a multiplex PCR-based diagnostic assay targeting the MAT idiomorph region was developed, allowing simultaneous determination of both species and mating type. This multiplex PCR assay was successfully applied to type a global collection of isolates. Second, the development of loop-mediated isothermal amplification (LAMP) assays targeting ß-tubulin sequences, which allow fast (<9 min) species-specific discrimination of global O. acuformis and O. yallundae isolates, is described. The LAMP assay can detect very small amounts of target DNA (1 pg) and was successfully applied in planta. In addition, mating-type-specific LAMP assays were also developed for rapid (<12 min) genotyping of O. acuformis and O. yallundae isolates. Finally, the multiplex PCR-based diagnostic was applied, in conjunction with spore trapping in field experiments, to provide evidence of the wind dispersal of ascospores from a diseased crop. The results indicate an important role of the sexual cycle in the dispersal of eyespot.


Asunto(s)
Grano Comestible , Enfermedades de las Plantas , Ascomicetos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Reproducción , Esporas Fúngicas
4.
Front Microbiol ; 8: 1729, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943873

RESUMEN

Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1) and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.

5.
Trop Plant Pathol ; 42(3): 203-209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32714500

RESUMEN

Many pathogens are dispersed by airborne spores, which can vary in space and time. We can use air sampling integrated with suitable diagnostic methods to give a rapid warning of inoculum presence to improve the timing of control options, such as fungicides. Air sampling can also be used to monitor changes in genetic traits of pathogen populations such as the race structure or frequency of fungicide resistance. Although some image-analysis methods are possible to identify spores, in many cases, species-specific identification can only be achieved by DNA-based methods such as qPCR and LAMP and in some cases by antibody-based methods (lateral flow devices) and biomarker-based methods ('electronic noses' and electro-chemical biosensors). Many of these methods also offer the prospect of rapid on-site detection to direct disease control decisions. Thresholds of spore concentrations that correspond to a disease risk depend on the sampler (spore-trap) location (whether just above the crop canopy, on a UAV or drone, or on a tall building) and also need to be considered with weather-based infection models. Where disease control by spore detection is not possible, some diseases can be detected at early stages using optical sensing methods, especially chlorophyll fluorescence. In the case of Fusarium infections on wheat, it is possible to map locations of severe infections, using optical sensing methods, to segregate harvesting of severely affected areas of fields to avoid toxins entering the food chain. This is most useful where variable crop growth or microclimates within fields generate spatially variable infection, i.e. parts of fields that develop disease, while other areas have escaped infection and do not develop any disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...