Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464161

RESUMEN

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.

2.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260361

RESUMEN

Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions. Statement of translational relevance: Therapies that block metastasis have the potential to save the majority of lives lost due to solid tumors. Disseminated tumor cells must educate the foreign, inhospitable microenvironments they encounter within secondary organs to facilitate metastatic colonization. Our study elucidated that disseminated osteosarcoma cells survive within the lung by co-opting and amplifying the lung's endogenous wound healing response program. More broadly, our results support a model wherein mesenchymal-epithelial cooperation is a key driver of lung metastasis. Osteosarcoma, a pediatric mesenchymal tumor, undergoes lung epithelial induced fibrotic activation while also transforming normal lung epithelial cells towards a fibrosis promoting phenotype. Conversely, adult epithelial carcinomas activate fibrotic signaling in normal lung mesenchymal fibroblasts. Our data implicates fibrosis and abnormal wound healing as key drivers of lung metastasis across multiple tumor types that can be targeted therapeutically to disrupt metastasis progression.

3.
Cell Oncol (Dordr) ; 47(1): 259-282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37676378

RESUMEN

PURPOSE: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS: We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS: Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Osteosarcoma , Animales , Perros , Humanos , Ratones , Neoplasias Óseas/patología , Línea Celular Tumoral , Supervivencia Celular , Pulmón/metabolismo , Neoplasias Pulmonares/secundario , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Osteosarcoma/patología , Fosforilación
4.
Nucleic Acids Res ; 52(D1): D1227-D1235, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953380

RESUMEN

The Drug-Gene Interaction Database (DGIdb, https://dgidb.org) is a publicly accessible resource that aggregates genes or gene products, drugs and drug-gene interaction records to drive hypothesis generation and discovery for clinicians and researchers. DGIdb 5.0 is the latest release and includes substantial architectural and functional updates to support integration into clinical and drug discovery pipelines. The DGIdb service architecture has been split into separate client and server applications, enabling consistent data access for users of both the application programming interface (API) and web interface. The new interface was developed in ReactJS, and includes dynamic visualizations and consistency in the display of user interface elements. A GraphQL API has been added to support customizable queries for all drugs, genes, annotations and associated data. Updated documentation provides users with example queries and detailed usage instructions for these new features. In addition, six sources have been added and many existing sources have been updated. Newly added sources include ChemIDplus, HemOnc, NCIt (National Cancer Institute Thesaurus), Drugs@FDA, HGNC (HUGO Gene Nomenclature Committee) and RxNorm. These new sources have been incorporated into DGIdb to provide additional records and enhance annotations of regulatory approval status for therapeutics. Methods for grouping drugs and genes have been expanded upon and developed as independent modular normalizers during import. The updates to these sources and grouping methods have resulted in an improvement in FAIR (findability, accessibility, interoperability and reusability) data representation in DGIdb.


Asunto(s)
Medicina de Precisión , Humanos , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Internet , Interfaz Usuario-Computador , Vocabulario Controlado
5.
JAMIA Open ; 6(4): ooad093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37954974

RESUMEN

Objective: The diversity of nomenclature and naming strategies makes therapeutic terminology difficult to manage and harmonize. As the number and complexity of available therapeutic ontologies continues to increase, the need for harmonized cross-resource mappings is becoming increasingly apparent. This study creates harmonized concept mappings that enable the linking together of like-concepts despite source-dependent differences in data structure or semantic representation. Materials and Methods: For this study, we created Thera-Py, a Python package and web API that constructs searchable concepts for drugs and therapeutic terminologies using 9 public resources and thesauri. By using a directed graph approach, Thera-Py captures commonly used aliases, trade names, annotations, and associations for any given therapeutic and combines them under a single concept record. Results: We highlight the creation of 16 069 unique merged therapeutic concepts from 9 distinct sources using Thera-Py and observe an increase in overlap of therapeutic concepts in 2 or more knowledge bases after harmonization using Thera-Py (9.8%-41.8%). Conclusion: We observe that Thera-Py tends to normalize therapeutic concepts to their underlying active ingredients (excluding nondrug therapeutics, eg, radiation therapy, biologics), and unifies all available descriptors regardless of ontological origin.

7.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066022

RESUMEN

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Filogenia , Variaciones en el Número de Copia de ADN/genética , Recurrencia Local de Neoplasia , Osteosarcoma/genética , Inestabilidad Genómica/genética , Neoplasias Óseas/genética
8.
BMC Biol ; 21(1): 98, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106386

RESUMEN

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Perfilación de la Expresión Génica , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Microambiente Tumoral/genética
9.
Nat Commun ; 14(1): 97, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609611

RESUMEN

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patología
10.
Cell Rep ; 42(1): 112013, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656711

RESUMEN

Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Niño , Adulto , Humanos , Animales , Ratones , Pez Cebra/metabolismo , Factores de Transcripción/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Fusión Génica , Coactivador 2 del Receptor Nuclear/genética , Proteínas Musculares/genética
11.
Dev Biol ; 496: 1-14, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696714

RESUMEN

HES3 is a basic helix-loop-helix transcription factor that regulates neural stem cell renewal during development. HES3 overexpression is predictive of reduced overall survival in patients with fusion-positive rhabdomyosarcoma, a pediatric cancer that resembles immature and undifferentiated skeletal muscle. However, the mechanisms of HES3 cooperation in fusion-positive rhabdomyosarcoma are unclear and are likely related to her3/HES3's role in neurogenesis. To investigate HES3's function during development, we generated a zebrafish CRISPR/Cas9 null mutation of her3, the zebrafish ortholog of HES3. Loss of her3 is not embryonic lethal and adults exhibit expected Mendelian ratios. Embryonic her3 zebrafish mutants exhibit dysregulated neurog1 expression, a her3 target gene, and the mutant her3 fails to bind the neurog1 promoter sequence. Further, her3 mutants are significantly smaller than wildtype and a subset present with lens defects as adults. Transcriptomic analysis of her3 mutant embryos indicates that genes involved in organ development, such as pctp and grinab, are significantly downregulated. Further, differentially expressed genes in her3 null mutant embryos are enriched for Hox and Sox10 motifs. Several cancer-related gene pathways are impacted, including the inhibition of matrix metalloproteinases. Altogether, this new model is a powerful system to study her3/HES3-mediated neural development and its misappropriation in cancer contexts.


Asunto(s)
Rabdomiosarcoma , Pez Cebra , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Neurogénesis , Rabdomiosarcoma/genética , Proteínas de Pez Cebra/genética
12.
Facial Plast Surg Aesthet Med ; 25(3): 250-257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36327097

RESUMEN

Background: To address the lack of non-cytotoxic, non-surgical options to treat undesirable focal adiposity of the face, we propose use of the anti-glaucoma medication and prostaglandin F2α analogue latanoprost, which has a well-described side effect of periorbital adipose shrinkage. Objective: To evaluate the safety and efficacy of soluble and liposomal latanoprost for focal fat reduction. Approach: To compare efficacy, single administrations of either the FDA-approved cytolytic drug deoxycholic acid (DOCA), latanoprost, or liposomal latanoprost were injected into ob/ob mouse inguinal fat pads. Study outcomes included mouse weight, inguinal fat pad volume, architecture, and cytotoxicity. Results: Both DOCA and soluble latanoprost significantly reduced inguinal fat pad volume whereas liposome encapsulation reduced inguinal fat pad volume insignificantly over the 14-day study period. Hematoxylin and eosin demonstrated effective reduction in adipocyte volume without histologic evidence of cytolysis or inflammation whereas DOCA caused dermal ulcerations, adipocyte lysis, and increased tissue inflammation. Conclusion: Latanoprost reduced fat volume without inducing cell lysis or inflammation.


Asunto(s)
Acetato de Desoxicorticosterona , Liposomas , Humanos , Animales , Ratones , Latanoprost/uso terapéutico , Preparaciones de Acción Retardada , Adiposidad , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico
13.
Nat Metab ; 4(10): 1322-1335, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36192601

RESUMEN

γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Animales , Células Th17/metabolismo , 4-Aminobutirato Transaminasa/metabolismo , Receptores de GABA-A/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Metabolismo Energético , Aminobutiratos/metabolismo , Carbono/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácidos Tricarboxílicos/metabolismo
14.
Sci Adv ; 8(37): eabp9005, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112677

RESUMEN

Using a genome-wide CRISPR screen, we identified CDK9, DHODH, and PRMT5 as synthetic lethal partners with gilteritinib treatment in fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) and genetically and pharmacologically validated their roles in gilteritinib sensitivity. The presence of FLT3-ITD is associated with an increase in anaerobic glycolysis, rendering leukemia cells highly sensitive to inhibition of glycolysis. Supportive of this, our data show the enrichment of single guide RNAs targeting 28 glycolysis-related genes upon gilteritinib treatment, suggesting that switching from glycolysis to oxidative phosphorylation (OXPHOS) may represent a metabolic adaption of AML in gilteritinib resistance. CDK9i/FLT3i, DHODHi/FLT3i, and PRMT5i/FLT3i pairs mechanistically converge on OXPHOS and purine biosynthesis blockade, implying that targeting the metabolic functions of these three genes and/or proteins may represent attractive strategies to sensitize AML to gilteritinib treatment. Our findings provide the basis for maximizing therapeutic impact of FLT3-ITD inhibitors and a rationale for a clinical trial of these novel combinations.

15.
Exp Hematol Oncol ; 10(1): 50, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715921

RESUMEN

The in vitro erythrocyte differentiation model remains a strong, clinically relevant tool to model erythroid development in normal and disease related hematopoiesis. This model also has application to developing therapeutics for diseases related to red blood cells such as sickle cell anemia where targeting increased expression of fetal hemoglobin has been a major emphasis. Since the original protocol's publication in 2002, many groups have published modified methodologies to address issues in efficiency of maturation and terminal enucleation, as well as in scalability. While all reports have merit and show efficient enucleation, the methodologies used vary widely in technique and cytokine content. Additionally, despite the strengths in these methods, reproducibility of efficient differentiation to the point of differentiation is difficult. To address these limitations, we developed a streamlined process where total PBMCs are first primed using the original liquid culture expansion phase (published in 2002) before being differentiated with minimal input via standardized, commercially purchased semi-solid medium culture pre-supplemented with erythropoietin. Our data show this methodology to produce similar levels of CD235/CD71 positivity as previous methods but with enhanced CD235 solo positivity and evidence of enucleated cells in comparison with other widely used methods. Given the difficulty and wide variation in in vitro differentiation techniques, we present this methodology as a streamlined methodology for production of mature erythroid cells with minimal input using easily purchased reagents.

16.
J Hematol Oncol ; 14(1): 101, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187548

RESUMEN

KPT-9274 is a phase 1 first-in-class dual PAK4/NAMPT inhibitor for solid tumor and non-Hodgkin's lymphoma. It demonstrates pre-clinical efficacy toward a broad spectrum of acute myeloid leukemia (AML) subtypes by inhibiting NAMPT-dependent NAD+ production. NAMPT is the rate-limiting enzyme in the salvage metabolic pathway leading to NAD+ generation. Tumor cells which are deficient in de novo pathway enzyme NAPRT1 are addicted to NAMPT. In clinical trials, treatment with NAMPT inhibitors resulted in dose-limiting toxicities. In order to dissect the mechanism of toxicity, mice were treated with KPT-9274 and resulting toxicities were characterized histopathologically and biochemically. KPT-9274 treatment caused gender-dependent stomach and kidney injuries and anemia. Female mice treated with KPT-9274 had EPO deficiency and associated impaired erythropoiesis. KPT-9274 treatment suppressed SIRT3 expression and concomitantly upregulated acetyl-manganese superoxide dismutase (MnSOD) in IMCD3 cells, providing a mechanistic basis for observed kidney toxicity. Importantly, niacin supplementation mitigated KPT-9274-caused kidney injury and EPO deficiency without affecting its efficacy. Altogether, our study delineated the mechanism of KPT-9274-mediated toxicity and sheds light onto developing strategies to improve the tolerability of this important anti-AML inhibitor.


Asunto(s)
Acrilamidas/efectos adversos , Aminopiridinas/efectos adversos , Anemia/inducido químicamente , Antineoplásicos/efectos adversos , Enfermedades Renales/inducido químicamente , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Acetilación/efectos de los fármacos , Anemia/etiología , Anemia/metabolismo , Anemia/patología , Animales , Eritropoyesis/efectos de los fármacos , Femenino , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Nicotinamida Fosforribosiltransferasa/metabolismo , Factores Sexuales , Sirtuina 3/metabolismo , Superóxido Dismutasa/metabolismo
17.
Biol Open ; 10(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34156069

RESUMEN

Vector-borne pathogens cause many human infectious diseases and are responsible for high mortality and morbidity throughout the world. They can also cause livestock epidemics with dramatic social and economic consequences. Due to its high costs, vector-borne disease surveillance is often limited to current threats, and the investigation of emerging pathogens typically occurs after the reports of clinical cases. Here, we use high-throughput sequencing to detect and identify a wide range of parasites and viruses carried by mosquitoes from Cambodia, Guinea, Mali and the USA. We apply this approach to individual Anopheles mosquitoes as well as pools of mosquitoes captured in traps; and compare the outcomes of this assay when applied to DNA or RNA. We identified known human and animal pathogens and mosquito parasites belonging to a wide range of taxa, as well as DNA sequences from previously uncharacterized organisms. Our results also revealed that analysis of the content of an entire trap could be an efficient approach to monitor and identify rare vector-borne pathogens in large surveillance studies. Overall, we describe a high-throughput and easy-to-customize assay to screen for a wide range of pathogens and efficiently complement current vector-borne disease surveillance approaches.


Asunto(s)
Arbovirus/aislamiento & purificación , Culicidae/microbiología , Eucariontes/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Parásitos/aislamiento & purificación , Animales , Humanos , Mosquitos Vectores/microbiología
18.
Clin Cancer Res ; 27(8): 2352-2366, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33542077

RESUMEN

PURPOSE: Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required for therapeutic benefit against acute myeloid leukemia (AML), we performed a genome-wide CRISPRi screen to identify rational disease-specific partners for a novel NAMPTi, KPT-9274. EXPERIMENTAL DESIGN: Cell lines and primary cells were analyzed for cell viability, self-renewal, and responses at RNA and protein levels with loss-of-function approaches and pharmacologic treatments. In vivo efficacy of combination therapy was evaluated with a xenograft model. RESULTS: We identified two histone deacetylases (HDAC), HDAC8 and SIRT6, whose knockout conferred synthetic lethality with KPT-9274 in AML. Furthermore, HDAC8-specific inhibitor, PCI-34051, or clinical class I HDAC inhibitor, AR-42, in combination with KPT-9274, synergistically decreased the survival of AML cells in a dose-dependent manner. AR-42/KPT-9274 cotreatment attenuated colony-forming potentials of patient cells while sparing healthy hematopoietic cells. Importantly, combined therapy demonstrated promising in vivo efficacy compared with KPT-9274 or AR-42 monotherapy. Mechanistically, genetic inhibition of SIRT6 potentiated the effect of KPT-9274 on PARP-1 suppression by abolishing mono-ADP ribosylation. AR-42/KPT-9274 cotreatment resulted in synergistic attenuation of homologous recombination and nonhomologous end joining pathways in cell lines and leukemia-initiating cells. CONCLUSIONS: Our findings provide evidence that HDAC8 inhibition- or shSIRT6-induced DNA repair deficiencies are potently synergistic with NAMPT targeting, with minimal toxicity toward normal cells, providing a rationale for a novel-novel combination-based treatment for AML.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Citocinas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Sirtuinas/antagonistas & inhibidores , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Técnicas de Inactivación de Genes , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Reparación del ADN por Recombinación/efectos de los fármacos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Parasit Vectors ; 13(1): 619, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303025

RESUMEN

BACKGROUND: The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS: We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS: Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS: This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.


Asunto(s)
Anopheles/microbiología , Resistencia a los Insecticidas , Microbiota , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Animales
20.
J Hematol Oncol ; 13(1): 139, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076970

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous and complex disease, and treatments for this disease have not been curative for the majority of patients. In younger patients, internal tandem duplication of FLT3 (FLT3-ITD) is a common mutation for which two inhibitors (midostaurin and gilteritinib) with varied potency and specificity for FLT3 are clinically approved. However, the high rate of relapse or failed initial response of AML patients suggests that the addition of a second targeted therapy may be necessary to improve efficacy. Using an unbiased large-scale CRISPR screen, we genetically identified BCL2 knockout as having synergistic effects with an approved FLT3 inhibitor. Here, we provide supportive studies that validate the therapeutic potential of the combination of FLT3 inhibitors with venetoclax in vitro and in vivo against multiple models of FLT3-ITD-driven AML. Our unbiased approach provides genetic validation for co-targeting FLT3 and BCL2 and repurposes CRISPR screening data, utilizing the genome-wide scope toward mechanistic understanding.


Asunto(s)
Leucemia Mieloide Aguda/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sistemas CRISPR-Cas , Línea Celular Tumoral , Femenino , Técnicas de Inactivación de Genes , Terapia Genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones SCID , Pirazinas/uso terapéutico , Estaurosporina/análogos & derivados , Estaurosporina/uso terapéutico , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...