Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
3.
Nat Commun ; 4: 1476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403577

RESUMEN

One of the most efficient plant resistance reactions to pathogen attack is the hypersensitive response, a form of programmed cell death at infection sites. The Arabidopsis transcription factor MYB30 is a positive regulator of hypersensitive cell death responses. Here we show that MIEL1 (MYB30-Interacting E3 Ligase1), an Arabidopsis RING-type E3 ubiquitin ligase that interacts with and ubiquitinates MYB30, leads to MYB30 proteasomal degradation and downregulation of its transcriptional activity. In non-infected plants, MIEL1 attenuates cell death and defence through degradation of MYB30. Following bacterial inoculation, repression of MIEL1 expression removes this negative regulation allowing sufficient MYB30 accumulation in the inoculated zone to trigger the hypersensitive response and restrict pathogen growth. Our work underlines the important role played by ubiquitination to control the hypersensitive response and highlights the sophisticated fine-tuning of plant responses to pathogen attack. Overall, this work emphasizes the importance of protein modification by ubiquitination during the regulation of transcriptional responses to stress in eukaryotic cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Células Vegetales/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Pseudomonas syringae/fisiología , Nicotiana/genética , Factores de Transcripción/genética , Transcripción Genética , Ubiquitinación
4.
Plant Signal Behav ; 7(2): 217-21, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22353865

RESUMEN

In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , Bacterias Gramnegativas/patogenicidad , Células Vegetales/microbiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Transcripción Genética , Cromatina/metabolismo , Bacterias Gramnegativas/metabolismo , Histonas/metabolismo , Interacciones Huésped-Patógeno , Células Vegetales/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Factores de Transcripción/metabolismo , Virulencia
5.
Plant Signal Behav ; 7(2): 184-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22353870

RESUMEN

During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/microbiología , Proteínas Bacterianas/química , Enfermedades de las Plantas/microbiología , Factores de Transcripción/antagonistas & inhibidores , Xanthomonas campestris/patogenicidad , Arabidopsis/metabolismo , Datos de Secuencia Molecular , Transcripción Genética , Virulencia , Xanthomonas campestris/química
6.
Plant Cell ; 23(9): 3498-511, 2011 09.
Artículo en Inglés | MEDLINE | ID: mdl-21917550

RESUMEN

Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Factores de Transcripción/metabolismo , Xanthomonas campestris/patogenicidad , Arabidopsis/microbiología , Regulación de la Expresión Génica de las Plantas , Secuencias Hélice-Asa-Hélice , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Relación Estructura-Actividad , Virulencia , Xanthomonas campestris/metabolismo
7.
Plant Signal Behav ; 6(1): 13-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21248491

RESUMEN

Eukaryotic organisms rely on intricate signaling networks to connect recognition of microbes with the activation of efficient defense reactions. Accumulating evidence indicates that phospholipids are more than mere structural components of biological membranes. Indeed, phospholipid-based signal transduction is widely used in plant cells to relay perception of extracellular signals. Upon perception of the invading microbe, several phospholipid hydrolyzing enzymes are activated that contribute to the establishment of an appropriate defense response. Activation of phospholipases is at the origin of the production of important defense signaling molecules, such as oxylipins and jasmonates, as well as the potent second messenger phosphatidic acid (PA), which has been shown to modulate the activity of a variety of proteins involved in defense signaling. Here, we provide an overview of recent reports describing the different plant phospholipase pathways that are activated during the establishment of plant defense reactions in response to pathogen attack.


Asunto(s)
Fosfolipasas/metabolismo , Plantas/enzimología , Plantas/inmunología , Transducción de Señal , Modelos Biológicos
8.
Proc Natl Acad Sci U S A ; 107(34): 15281-6, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696912

RESUMEN

The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fosfolipasas A2 Secretoras/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cartilla de ADN/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Mutación , Fosfolipasas A2 Secretoras/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/patogenicidad , ARN de Planta/genética , ARN de Planta/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/fisiología , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
9.
PLoS One ; 5(12): e15773, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21203472

RESUMEN

During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD(1-760)) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD(216-760)). Furthermore, the N-terminal extension of XopD, which is absent in XopD(216-760), is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta.


Asunto(s)
Xanthomonas campestris/metabolismo , Secuencia de Aminoácidos , ADN/química , Proteínas de Unión al ADN/química , Dimerización , Epítopos/química , Escherichia coli/metabolismo , Prueba de Complementación Genética , Solanum lycopersicum/microbiología , Espectrometría de Masas/métodos , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Nicotiana/genética , Nicotiana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA