Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 231: 113577, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797466

RESUMEN

A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces. X-ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and contact angle (CA) are used to chemically characterize the gold functionalized surface and ToF-SIMS is also used to confirm the right antibody orientation. Optical characterization is applied to monitor the functionalization steps and fluorescence measurements are used to set up the proper experimental conditions and also to detect Brucella bacteria on the surface. Best results are obtained with a 10 ng/µl incubation solution of antibody immobilized, in an oriented way, on a mixed PEG SAM interface.


Asunto(s)
Técnicas Biosensibles , Brucella , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Oro/química , Inmunoensayo/métodos , Propiedades de Superficie
2.
Sci Adv ; 7(29)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34261651

RESUMEN

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.

3.
J Mater Chem C Mater ; 7(4): 943-952, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30774956

RESUMEN

Bulk heterojunction solar cells based on conjugated polymer donors and fullerene-derivative acceptors have received much attention in the last decade. Alternative acceptors like organic non-fullerene acceptors or inorganic nanocrystals have been investigated to a lesser extent; however, they also show great potential. In this study, one focus is set on the investigation of the in situ growth of copper indium sulfide nanocrystals in a conjugated polymer matrix. This preparation method allows the fabrication of a hybrid active layer without long-chain ligands, which could hinder charge separation and transport. In contrast, surfactants for the passivation of the nanocrystal surface are missing. To tackle this problem, we modified the absorber layer with 1,3-benzenedithiol and investigated the influence on charge transfer and solar cell performance. Using ToF-SIMS measurements, we could show that 1,3-benzenedithiol is successfully incorporated and homogeneously distributed in the absorber layer, which significantly increases the power conversion efficiency of the corresponding solar cells. This can be correlated to an improved charge transfer between the nanocrystals and the conjugated polymer as revealed by transient absorption spectroscopy as well as prolonged carrier lifetimes as disclosed by transient photovoltage measurements.

4.
Anal Bioanal Chem ; 399(7): 2571-82, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21225248

RESUMEN

Volatile organic compounds of extra virgin olive oils obtained from the local Italian cultivar Grignano were measured by proton transfer reaction-mass spectrometry (PTR-MS). Oils were extracted by olives harvested at different ripening stages across veraison, performing each extraction step and the whole extraction process in nitrogen atmosphere to observe the changes in the volatile profiles of the oils. Principal component analysis carried out on the full spectral signature of the PTR-MS measurements showed that the stage of ripening has a stronger effect on the global definition of volatile profiles than the use of nitrogen during oil extraction. The fingerprint-like chemical information provided by the spectra were used to construct a heat map, which allowed the dynamical representation of the multivariate nature of mass evolution during the ripening process. This provided the first evidence that some groups of volatile organic compounds displayed a time course of regulation with coordinated increasing or decreasing trends in association with specific stages of fruit ripening.


Asunto(s)
Espectrometría de Masas/métodos , Olea/metabolismo , Aceites de Plantas/química , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/análisis , Nitrógeno , Aceite de Oliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA