Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 2(6): 397-407, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11389473

RESUMEN

Voltage-gated Na+ channels set the threshold for action potential generation and are therefore good candidates to mediate forms of plasticity that affect the entire neuronal output. Although early studies led to the idea that Na+ channels were not subject to modulation, we now know that Na+ channel function is affected by phosphorylation. Furthermore, Na+ channel modulation is implicated in the control of input-output relationships in several types of neuron and seems to be involved in phenomena as varied as cocaine withdrawal, hyperalgesia and light adaptation. Here we review the available evidence for the regulation of Na+ channels by phosphorylation, its molecular mechanism, and the possible ways in which it affects neuronal function.


Asunto(s)
Potenciales de Acción/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Canales de Sodio/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/ultraestructura , Humanos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Fosforilación , Canales de Sodio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
2.
J Neurosci ; 19(17): RC21, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10460275

RESUMEN

Activation of D1-like dopamine (DA) receptors reduces peak Na(+) current in acutely isolated hippocampal neurons via a modulatory mechanism involving phosphorylation of the Na(+) channel alpha subunit by cAMP-dependent protein kinase (PKA). Peak Na(+) current is reduced 20-50% in the presence of the D1 agonist SKF 81297 or the PKA activator Sp-5,6-dichloro-l-beta-d-ribofuranosyl benzimidazole-3',5'-cyclic monophosphorothionate (cBIMPS). Co-immunoprecipitation experiments show that Na(+) channels are associated with PKA and A-kinase-anchoring protein 15 (AKAP-15), and immunocytochemical labeling reveals their co-localization in the cell bodies and proximal dendrites of hippocampal pyramidal neurons. Anchoring of PKA near the channel by an AKAP, which binds the RII alpha regulatory subunit, is necessary for Na(+) channel modulation in acutely dissociated hippocampal pyramidal neurons. Intracellular dialysis with the anchoring inhibitor peptides Ht31 from a human thyroid AKAP and AP2 from AKAP-15 eliminated the modulation of the Na(+) channel by the D1-agonist SKF 81297 and the PKA activator cBIMPS. In contrast, dialysis with the inactive proline-substituted control peptides Ht31-P and AP2-P had little effect on the D1 and PKA modulation. Therefore, we conclude that modulation of the Na(+) channel by activation of D1-like DA receptors requires targeted localization of PKA near the channel to achieve phosphorylation of the alpha subunit and to modify the functional properties of the channel.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Receptores de Dopamina D1/fisiología , Canales de Sodio/fisiología , Proteínas de Anclaje a la Quinasa A , Animales , Activación Enzimática , Hipocampo/citología , Hipocampo/enzimología , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Fosforilación , Pruebas de Precipitina , Células Piramidales/enzimología , Células Piramidales/metabolismo , Ratas
3.
J Neurosci ; 19(13): 5301-10, 1999 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10377341

RESUMEN

Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.


Asunto(s)
Activación del Canal Iónico , Células Piramidales/fisiología , Receptores de Dopamina D1/fisiología , Canales de Sodio/fisiología , Animales , Benzazepinas/farmacología , Calcio/metabolismo , Línea Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difosfonatos/farmacología , Agonistas de Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Humanos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología , Células Piramidales/metabolismo , Ratas , Receptores de Dopamina D1/agonistas , Sodio/metabolismo , Canales de Sodio/genética
4.
Proc Natl Acad Sci U S A ; 95(23): 13947-52, 1998 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-9811906

RESUMEN

The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-alpha-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation approximately 40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to approximately 60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain-interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on L-type calcium channels.


Asunto(s)
Batracotoxinas/farmacología , Canales de Sodio/fisiología , Células Cultivadas , Electrofisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Sodio/fisiología , Agonistas de los Canales de Sodio , Transfección
5.
J Neurosci ; 17(19): 7330-8, 1997 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-9295379

RESUMEN

Phosphorylation of brain Na+ channel alpha subunits by cAMP-dependent protein kinase (PKA) decreases peak Na+ current in cultured brain neurons and in mammalian cells and Xenopus oocytes expressing cloned brain Na+ channels. We have studied PKA regulation of Na+ channel function by activation of D1-like dopamine receptors in acutely isolated hippocampal neurons using whole-cell voltage-clamp recording techniques. The D1 agonist SKF 81297 reversibly reduced peak Na+ current in a concentration-dependent manner. No changes in the voltage dependence or kinetics of activation or inactivation were observed. This effect was mediated by PKA, as it was mimicked by application of the PKA activator Sp-5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3', 5'-monophosphorothioate(cBIMPS) and was inhibited by the specific PKA inhibitor peptide PKAI5-24. cBIMPS had similar effects on type IIA brain Na+ channel alpha subunits expressed in tsA-201 cells, but no effect was observed on a mutant Na+ channel alpha subunit in which serine residues in five PKA phosphorylation sites in the intracellular loop connecting domains I and II (LI-II) had been replaced by alanine. A single mutation, S573A, similarly eliminated cBIMPS modulation. Thus, activation of D1-like dopamine receptors results in PKA-dependent phosphorylation of specific sites in LI-II of the Na+ channel alpha subunit, causing a reduction in Na+ current. Such modulation is expected to exert a profound influence on overall neuronal excitability. Dopaminergic input to the hippocampus from the mesocorticolimbic system may exert this influence in vivo.


Asunto(s)
AMP Cíclico/fisiología , Dopamina/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Canales de Sodio/metabolismo , Sodio/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Conductividad Eléctrica , Hipocampo/citología , Masculino , Fosforilación , Ratas , Receptores de Dopamina D1/fisiología
6.
Neuron ; 16(5): 1019-26, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8630240

RESUMEN

Phosphorylation of brain Na+ channels by protein kinase C (PKC) decreases peak Na+ current and slows macroscopic inactivation, but receptor-activated modulation of Na+ currents via the PKC pathway has not been demonstrated. We have examined modulation of Na+ channels by activation of muscarinic receptors in acutely-isolated hippocampal neurons using whole-cell voltage-clamp recording. Application of the muscarinic agonist carbachol reduced peak Na+ current and slowed macroscopic inactivation at all potentials, without changing the voltage-dependent properties of the channel. These effects were mediated by PKC, since they were eliminated when the specific PKC inhibitor (PKCI19-36) was included in the pipette solution and mimicked by the extracellular application of the PKC activator, OAG. Thus, activation of endogenous muscarinic receptors on hippocampal neurons strongly modulates Na+ channel activity by activation of PKC. Cholinergic input from basal forebrain neurons may have this effect in the hippocampus in vivo.


Asunto(s)
Hipocampo/fisiología , Activación del Canal Iónico , Proteína Quinasa C/fisiología , Receptores Muscarínicos/fisiología , Canales de Sodio/fisiología , Animales , Carbacol/farmacología , Activación Enzimática , Masculino , Fosforilación , Ratas , Sodio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...