Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 187: 107869, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423562

RESUMEN

Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.

2.
PLoS One ; 17(11): e0276117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395183

RESUMEN

We present a phylogeographic study of the tree species Eucalyptus baueriana Schauer, which occurs in disjunct areas on the near coastal plains and ranges of the south-east Australian mainland. DArTseq data are used to build a phylogeny including E. baueriana and closely related taxa to test its monophyly, test the genetic distinctness of the three subspecies of E. baueriana, and investigate relationships between its disjunct populations. Additionally, we use population structure analysis to investigate the genetic distinctness of populations, and MaxEnt to investigate the environmental factors potentially influencing the species' distribution. We show E. baueriana is monophyletic and most closely related to three other Blue Box eucalypt species: E. conica H.Deane & Maiden, E. dalveenica T.L.Collins, R.L.Andrew & J.J.Bruhl and E. magnificata L.A.S.Johnson & K.D.Hill, with some evidence for genetic introgression between these taxa. Within E. baueriana, the deepest genetic breaks do not correspond with the subspecies classification as the two geographically restricted subspecies, together with samples of the more widespread E. baueriana subsp. baueriana from west of the Gippsland lowlands, form a south-western clade with that is sister to other populations of subsp. baueriana. The oldest genetic break in the species occurs in far eastern Gippsland (Victoria), corresponding to one of the shortest geographic disjunctions in the species' distribution. Genetic breaks in other species have been observed in this region which is broadly referred to as the southern transition zone. Both total annual rainfall and the seasonality of this rainfall are hypothesised to affect the species' distribution; gaps in its distribution are in areas of higher rainfall that support closed forest and in regions with more winter dominated rainfall.


Asunto(s)
Eucalyptus , Filogeografía , Filogenia , Eucalyptus/genética , Ríos , Australia
3.
PLoS One ; 17(10): e0274267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240205

RESUMEN

Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country's floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.


Asunto(s)
Acacia , Fabaceae , Acacia/genética , Australia , Cromo , Elementos Transponibles de ADN , Fabaceae/genética , Genoma de Planta , Anotación de Secuencia Molecular , Filogenia , Fitomejoramiento
4.
Sci Adv ; 8(1): eabm1406, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995110

RESUMEN

Reduced precipitation in the Miocene triggered the geographic contraction of rainforest ecosystems around the world. In Australia, this change was particularly pronounced; mesic rainforest ecosystems that once dominated the landscape transformed into the shrublands, grasslands, and deserts of today. A lack of well-preserved fossils has made it difficult to understand the nature of Australian ecosystems before the aridification. Here, we report on an exceptionally well-preserved rainforest biota from New South Wales, Australia. This Konservat-Lagerstätte hosts a rich diversity of microfossils, plants, insects, spiders, and vertebrate remains preserved in goethite. We document evidence for several species interactions including predation, parasitism, and pollination. The fossils are indicative of an oxbow lake in a mesic rainforest and suggest that rainforest distributions have shifted since the Miocene. The variety of fossils preserved, together with high fidelity of preservation, allows for unprecedented insights into the mesic ecosystems that dominated Australia during the Miocene.

5.
Sci Rep ; 11(1): 18388, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526644

RESUMEN

New Caledonia was, until recently, considered an old continental island harbouring a rich biota with outstanding Gondwanan relicts. However, deep marine sedimentation and tectonic evidence suggest complete submergence of the island during the latest Cretaceous to the Paleocene. Molecular phylogenies provide evidence for some deeply-diverging clades that may predate the Eocene and abundant post-Oligocene colonisation events. Extinction and colonization biases, as well as survival of some groups in refuges on neighbouring paleo-islands, may have obscured biogeographic trends over long time scales. Fossil data are therefore crucial for understanding the history of the New Caledonian biota, but occurrences are sparse and have received only limited attention. Here we describe five exceptional fossil assemblages that provide important new insights into New Caledonia's terrestrial paleobiota from three key time intervals: prior to the submersion of the island, following re-emergence, and prior to Pleistocene climatic shifts. These will be of major importance for elucidating changes in New Caledonia's floristic composition over time.

6.
Ecol Evol ; 11(1): 664-678, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437459

RESUMEN

AIM: To infer relationships between populations of the semi-arid, mallee eucalypt, Eucalyptus behriana, to build hypotheses regarding evolution of major disjunctions in the species' distribution and to expand understanding of the biogeographical history of southeastern Australia. LOCATION: Southeastern Australia. TAXON: Eucalyptus behriana (Myrtaceae, Angiospermae). METHODS: We developed a large dataset of anonymous genomic loci for 97 samples from 11 populations of E. behriana using double digest restriction site-associated DNA sequencing (ddRAD-seq), to determine genetic relationships between the populations. These relationships, along with species distribution models, were used to construct hypotheses regarding environmental processes that have driven fragmentation of the species' distribution. RESULTS: Greatest genetic divergence was between populations on either side of the Lower Murray Basin. Populations west of the Basin showed greater genetic divergence between one another than the eastern populations. The most genetically distinct population in the east (Long Forest) was separated from others by the Great Dividing Range. A close relationship was found between the outlying northernmost population (near West Wyalong) and those in the Victorian Goldfields despite a large disjunction between them. CONCLUSIONS: Patterns of genetic variation are consistent with a history of vicariant differentiation of disjunct populations. We infer that an early disjunction to develop in the species distribution was that across the Lower Murray Basin, an important biogeographical barrier separating many dry sclerophyll plant taxa in southeastern Australia. Additionally, our results suggest that the western populations fragmented earlier than the eastern ones. Fragmentation, both west and east of the Murray Basin, is likely tied to climatic changes associated with glacial-interglacial cycles although it remains possible that major geological events including uplift of the Mount Lofty Ranges and basalt flows in the Newer Volcanics Province also played a role.

7.
GigaByte ; 2021: gigabyte36, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36824345

RESUMEN

Organelle genomes are typically represented as single, static, circular molecules. However, there is evidence that the chloroplast genome exists in two structural haplotypes and that the mitochondrial genome can display multiple circular, linear or branching forms. We sequenced and assembled chloroplast and mitochondrial genomes of the Golden Wattle, Acacia pycnantha, using long reads, iterative baiting to extract organelle-only reads, and several assembly algorithms to explore genomic structure. Using a de novo assembly approach agnostic to previous hypotheses about structure, we found that different assemblies revealed contrasting arrangements of genomic segments; a hypothesis supported by mapped reads spanning alternate paths.

8.
Mol Ecol ; 29(20): 3872-3888, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32885504

RESUMEN

Global climate change poses a significant threat to natural communities around the world, with many plant species showing signs of climate stress. Grassland ecosystems are not an exception, with climate change compounding contemporary pressures such as habitat loss and fragmentation. In this study, we assess the climate resilience of Themeda triandra, a foundational species and the most widespread plant in Australia, by assessing the relative contributions of spatial, environmental and ploidy factors to contemporary genomic variation. Reduced-representation genome sequencing on 472 samples from 52 locations was used to test how the distribution of genomic variation, including ploidy polymorphism, supports adaptation to hotter and drier climates. We explicitly quantified isolation by distance (IBD) and isolation by environment (IBE) and predicted genomic vulnerability of populations to future climates based on expected deviation from current genomic composition. We found that a majority (54%) of genomic variation could be attributed to IBD, while an additional 22% (27% when including ploidy information) could be explained by two temperature and two precipitation climate variables demonstrating IBE. Ploidy polymorphisms were common within populations (31/52 populations), indicating that ploidy mixing is characteristic of T. triandra populations. Genomic vulnerabilities were found to be heterogeneously distributed throughout the landscape, and our analysis suggested that ploidy polymorphism, along with other factors linked to polyploidy, reduced vulnerability to future climates by 60% (0.25-0.10). Our data suggests that polyploidy may facilitate adaptation to hotter climates and highlight the importance of incorporating ploidy in adaptive management strategies to promote the resilience of this and other foundation species.


Asunto(s)
Ecosistema , Poaceae , Australia , Cambio Climático , Genómica , Ploidias , Poaceae/genética
9.
Sci Rep ; 10(1): 5703, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242031

RESUMEN

The Northern Hemisphere dominates our knowledge of Mesozoic and Cenozoic fossilized tree resin (amber) with few findings from the high southern paleolatitudes of Southern Pangea and Southern Gondwana. Here we report new Pangean and Gondwana amber occurrences dating from ~230 to 40 Ma from Australia (Late Triassic and Paleogene of Tasmania; Late Cretaceous Gippsland Basin in Victoria; Paleocene and late middle Eocene of Victoria) and New Zealand (Late Cretaceous Chatham Islands). The Paleogene, richly fossiliferous deposits contain significant and diverse inclusions of arthropods, plants and fungi. These austral discoveries open six new windows to different but crucial intervals of the Mesozoic and early Cenozoic, providing the earliest occurrence(s) of some taxa in the modern fauna and flora giving new insights into the ecology and evolution of polar and subpolar terrestrial ecosystems.

10.
Commun Biol ; 1: 46, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271929

RESUMEN

The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the ecological structure of sea floor communities due to increased predation pressure. It was thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively, Cenozoic occurrences from Antarctica and South America were described as retrograde reversions to Palaeozoic type communities in cool water. Our results provide conclusive evidence that isocrinid migration from shallow to deep water did not occur at the same time all over the world. The description of a substantial new fauna from Antarctica and Australia, from often-overlooked isolated columnals and articulated crinoids, in addition to the first compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the Eocene/Oligocene boundary.

11.
PLoS One ; 13(5): e0197545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29768495

RESUMEN

Pollen analysis is widely used to verify the geographic origin of honeys, but has never been employed in Australia. In this study, we analysed the pollen content of 173 unblended honey samples sourced from most of the commercial honey producing regions in southern Australia. Southern Australian vegetation is dominated by Eucalyptus (Myrtaceae) forests and, as expected, most Australian honeys are palynologically dominated by Eucalyptus, while other important components include Myrtaceae taxa such as Corymbia/Angophora and the tribe Leptospermeae; plus Brassicaceae, Echium, Macadamia, and Acacia. An important feature of the honeys is the number of Myrtaceae pollen morphotypes per sample, which is generally high (mean = 4.6) compared to honeys produced outside of Australia, including Eucalyptus honeys produced in the Mediterranean region, and honeys produced in South America, which has its own rich indigenous Myrtaceae flora. In the latter regions, the number of Myrtaceae morphotypes is apparently generally ≤2. A high number of Myrtaceae morphotypes may be a feasible criterion for authenticating the origin of Australian honeys, since most Australian honey is produced by honey bees mainly working indigenous floral resources. Myrtaceae morphotype diversity is a convenient melissopalynological measure that could be applied even where detailed knowledge of the pollen morphology of the many component genera and species is absent. Palynological criteria developed in Europe for authenticating Eucalyptus honeys should not be relied upon for Australian honeys, since those criteria are not based on samples of Australian honey.


Asunto(s)
Miel , Polen , Australia , Eucalyptus , Magnoliopsida , Microscopía , Polen/ultraestructura
12.
Appl Plant Sci ; 6(2): e1026, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29732257

RESUMEN

PREMISE OF THE STUDY: Globally, natural history collections are focused on digitizing specimens and information and making these data accessible. Usage information on National Herbarium of Victoria data made available through the Atlas of Living Australia and The Australasian Virtual Herbarium (AVH) is analyzed to understand how and by whom herbarium data are being used. METHODS: Since 2010, AVH data usage information has been gathered from users and supplied to data custodians as a spreadsheet that includes number of download events, number of records downloaded, and user reasons for downloading data in predefined categories. RESULTS: Since 2010, in excess of 268,000 download events of 194 million records (excluding testing events) have been recorded for the National Herbarium of Victoria data set. This means, on average, every record has been downloaded 220 times in the past nine years. Data use grew continuously from 2010 to 2015 but decreased in 2016 due to fewer ecological projects. DISCUSSION: Data have primarily been used for ecological research, but there is an emerging trend for use in education including citizen science projects. Information about data use demonstrates relevance to funding agencies and helps inform the development of collections and prioritization of resources when digitizing material.

13.
PLoS One ; 12(10): e0186259, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084279

RESUMEN

In Australia, Poaceae tribe Poeae are represented by 19 genera and 99 species, including economically and environmentally important native and introduced pasture grasses [e.g. Poa (Tussock-grasses) and Lolium (Ryegrasses)]. We used this tribe, which are well characterised in regards to morphological diversity and evolutionary relationships, to test the efficacy of DNA barcoding methods. A reference library was generated that included 93.9% of species in Australia (408 individuals, [Formula: see text] = 3.7 individuals per species). Molecular data were generated for official plant barcoding markers (rbcL, matK) and the nuclear ribosomal internal transcribed spacer (ITS) region. We investigated accuracy of specimen identifications using distance- (nearest neighbour, best-close match, and threshold identification) and tree-based (maximum likelihood, Bayesian inference) methods and applied species discovery methods (automatic barcode gap discovery, Poisson tree processes) based on molecular data to assess congruence with recognised species. Across all methods, success rate for specimen identification of genera was high (87.5-99.5%) and of species was low (25.6-44.6%). Distance- and tree-based methods were equally ineffective in providing accurate identifications for specimens to species rank (26.1-44.6% and 25.6-31.3%, respectively). The ITS marker achieved the highest success rate for specimen identification at both generic and species ranks across the majority of methods. For distance-based analyses the best-close match method provided the greatest accuracy for identification of individuals with a high percentage of "correct" (97.6%) and a low percentage of "incorrect" (0.3%) generic identifications, based on the ITS marker. For tribe Poeae, and likely for other grass lineages, sequence data in the standard DNA barcode markers are not variable enough for accurate identification of specimens to species rank. For recently diverged grass species similar challenges are encountered in the application of genetic and morphological data to species delimitations, with taxonomic signal limited by extensive infra-specific variation and shared polymorphisms among species in both data types.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Plantas/genética , Poaceae/genética , Australia , Poaceae/clasificación
14.
Ann Bot ; 119(8): 1267-1277, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334284

RESUMEN

Background and Aims: Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Methods: Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Key Results: Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. Conclusions: Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units.


Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Genoma de Planta , Orchidaceae/genética , Genética de Población , Genómica , Genotipo , Repeticiones de Microsatélite , Orchidaceae/clasificación , Australia del Sur
15.
Nucleic Acids Res ; 42(Database issue): D607-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24137012

RESUMEN

The Global Genome Biodiversity Network (GGBN) was formed in 2011 with the principal aim of making high-quality well-documented and vouchered collections that store DNA or tissue samples of biodiversity, discoverable for research through a networked community of biodiversity repositories. This is achieved through the GGBN Data Portal (http://data.ggbn.org), which links globally distributed databases and bridges the gap between biodiversity repositories, sequence databases and research results. Advances in DNA extraction techniques combined with next-generation sequencing technologies provide new tools for genome sequencing. Many ambitious genome sequencing projects with the potential to revolutionize biodiversity research consider access to adequate samples to be a major bottleneck in their workflow. This is linked not only to accelerating biodiversity loss and demands to improve conservation efforts but also to a lack of standardized methods for providing access to genomic samples. Biodiversity biobank-holding institutions urgently need to set a standard of collaboration towards excellence in collections stewardship, information access and sharing and responsible and ethical use of such collections. GGBN meets these needs by enabling and supporting accessibility and the efficient coordinated expansion of biodiversity biobanks worldwide.


Asunto(s)
Biodiversidad , Bancos de Muestras Biológicas , Bases de Datos de Ácidos Nucleicos , Genómica , ADN/aislamiento & purificación , Genoma , Internet , Análisis de Secuencia de ADN
16.
PLoS One ; 8(8): e72493, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967311

RESUMEN

BACKGROUND: Rutaceae subfamily Rutoideae (46 genera, c. 660 species) is diverse in both rainforests and sclerophyll vegetation of Australasia. Australia and New Caledonia are centres of endemism with a number of genera and species distributed disjunctly between the two regions. Our aim was to generate a high-level molecular phylogeny for the Australasian Rutoideae and identify major clades as a framework for assessing morphological and biogeographic patterns and taxonomy. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses were based on chloroplast genes, rbcL and atpB, for 108 samples (78 new here), including 38 of 46 Australasian genera. Results were integrated with those from other molecular studies to produce a supertree for Rutaceae worldwide, including 115 of 154 genera. Australasian clades are poorly matched with existing tribal classifications, and genera Philotheca and Boronia are not monophyletic. Major sclerophyll lineages in Australia belong to two separate clades, each with an early divergence between rainforest and sclerophyll taxa. Dehiscent fruits with seeds ejected at maturity (often associated with myrmecochory) are inferred as ancestral; derived states include woody capsules with winged seeds, samaras, fleshy drupes, and retention and display of seeds in dehisced fruits (the last two states adaptations to bird dispersal, with multiple origins among rainforest genera). Patterns of relationship and levels of sequence divergence in some taxa, mostly species, with bird-dispersed (Acronychia, Sarcomelicope, Halfordia and Melicope) or winged (Flindersia) seeds are consistent with recent long-distance dispersal between Australia and New Caledonia. Other deeper Australian/New Caledonian divergences, some involving ant-dispersed taxa (e.g., Neoschmidia), suggest older vicariance. CONCLUSIONS/SIGNIFICANCE: This comprehensive molecular phylogeny of the Australasian Rutoideae gives a broad overview of the group's evolutionary and biogeographic history. Deficiencies of infrafamilial classifications of Rutoideae have long been recognised, and our results provide a basis for taxonomic revision and a necessary framework for more focused studies of genera and species.


Asunto(s)
Genes del Cloroplasto , Rubiaceae/clasificación , Rubiaceae/genética , Australia , Evolución Biológica , Frutas , Nueva Caledonia , Fenotipo , Filogenia , Semillas , Tiempo (Meteorología)
17.
Syst Biol ; 61(2): 289-313, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22201158

RESUMEN

Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for the crown group age of Nothofagus varied from 13 to 113 Ma across our full range of calibration scenarios. We suggest that increased background research should be made at all stages of the calibration process to reduce errors wherever possible, from verifying the geochronological data on the fossils to critical reassessment of their phylogenetic position.


Asunto(s)
Fagus/genética , Fósiles , Biodiversidad , Calibración , Clasificación/métodos , ADN de Plantas/química , Fagus/clasificación , Variación Genética , Filogenia , Alineación de Secuencia , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 106(1): 221-5, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19116275

RESUMEN

Dating the Tree of Life has now become central to relating patterns of biodiversity to key processes in Earth history such as plate tectonics and climate change. Regions with a Mediterranean climate have long been noted for their exceptional species richness and high endemism. How and when these biota assembled can only be answered with a good understanding of the sequence of divergence times for each of their components. A critical aspect of dating by using molecular sequence divergence is the incorporation of multiple suitable age constraints. Here, we show that only rigorous phylogenetic analysis of fossil taxa can lead to solid calibration and, in turn, stable age estimates, regardless of which of 3 relaxed clock-dating methods is used. We find that Proteaceae, a model plant group for the Mediterranean hotspots of the Southern Hemisphere with a very rich pollen fossil record, diversified under higher rates in the Cape Floristic Region and Southwest Australia than in any other area of their total distribution. Our results highlight key differences between Mediterranean hotspots and indicate that Southwest Australian biota are the most phylogenetically diverse but include numerous lineages with low diversification rates.


Asunto(s)
Biodiversidad , Clima , Filogenia , Fósiles , Región Mediterránea , Tiempo
19.
Mol Phylogenet Evol ; 51(1): 31-43, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19135535

RESUMEN

The angiosperm family Proteaceae is a distinct component of the Cape Floristic Region biodiversity hotspot with 330 endemic species. Phylogenetic analyses of subfamily Proteoideae using sequence data from one nuclear and six plastid loci show that most of this diversity is contained in two distinct Cape floral clades. Molecular dating analyses, using Bayesian and penalized likelihood methods and four phylogenetically supported fossil age constraints, reveal contrasting histories for these two clades. The genus Protea belongs to a lineage that may have been in Africa since the Late Cretaceous but began to diversify in the Cape only 5-18 Myr ago. In contrast, the Leucadendrinae clade presumably arrived in the region no earlier than 46 Myr ago by long-distance dispersal from an Australian ancestor and the extant members of this clade began to diversify in the Cape 22-39 Myr ago. These results join a growing number of case studies that challenge the commonly accepted view that most of the Cape flora radiated synchronously in the Late Miocene and Early Pliocene when a Mediterranean climate settled in the region.


Asunto(s)
Evolución Molecular , Fósiles , Magnoliopsida/genética , Filogenia , África Austral , Teorema de Bayes , ADN de Plantas/genética , Funciones de Verosimilitud , Magnoliopsida/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...