Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 19: 100808, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780290

RESUMEN

Quinoa (Chenopodium quinoa Willd.) is an ancient crop with perfect nutritional composition and antioxidants substances. However, the current research on the nutritional quality of quinoa is limited to a small number of varieties or a single origin. In this study, we aimed at providing a detailed evaluation of abundant nutrients of quinoa seeds from thirty varieties with different color in different origins, including soluble protein, soluble sugar, amino acid, vitamin, fatty acid and saponin. Results showed that there were significant differences in the contents of γ-aminobutyric acid (6.67-78.67 mg/100 g DW) and vitamin C (11.675-105.135 mg/100 g DW) in quinoa seeds. Here, we scored thirty quinoa seeds using a weighted average score system first time and identified four varieties, black quinoa JQ-00145, red quinoa JQ-00125 and two white quinoa JQ-00005/JQ-00077, with superior nutritional quality and oxidation resistance. The results of this study will provide theoretical guidance for consumption of quinoa.

2.
Plants (Basel) ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687397

RESUMEN

As a vegetable with high nutritional value, broccoli (Brassica oleracea var. italica) is rich in vitamins, antioxidants and anti-cancer compounds. Glucosinolates (GLs) are one of the important functional components widely found in cruciferous vegetables, and their hydrolysate sulforaphane (SFN) plays a key function in the anti-cancer process. Herein, we revealed that blue light significantly induced the SFN content in broccoli sprouts, and salicylic acid (SA) was involved in this process. We investigated the molecular mechanisms of SFN accumulation with blue light treatment in broccoli sprouts and the relationship between SFN and SA. The results showed that the SFN accumulation in broccoli sprouts was significantly increased under blue light illumination, and the expression of SFN synthesis-related genes was particularly up-regulated by SA under blue light. Moreover, blue light considerably decreased the SA content compared with white light, and this decrease was more suppressed by paclobutrazol (Pac, an inhibitor of SA synthesis). In addition, the transcript level of SFN synthesis-related genes and the activity of myrosinase (MYR) paralleled the trend of SFN accumulation under blue light treatment. Overall, we concluded that SA participates in the SFN accumulation in broccoli sprouts under blue light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA