Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 14(24): 5508-5516, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34652074

RESUMEN

Although the activity of electrocatalysts towards oxygen evolution reaction (OER) has achieved considerable improvement by modulating the intrinsic electron structure, the role of supports to OER performance, often being reduced to enhancing the conductivity, is not fully explored. In this paper, a proof-of-concept study based on a series of hybrids of nickel iron (hydr)oxide nanoparticles (NiFeO NPs) and carbon supports with different oxidation level compared the motivation of supports for OER activity. The key to implementation lay in anchoring and growing of NiFeO NPs on the various carbon supports by electrostatic assembly and subsequent in-situ reduction. A series of experiments indicated that the strong coupling of metal ions and graphene oxide (GO) contributed to the formation of ultrasmall NiFeO NPs (≈2 nm) and the firm interaction between NiFeO NPs and GO, which in turn resulted in exposing more metal atoms, modulating local electron structure of active sites, and accelerating the charge-transfer ability. The OER activity of optimal NiFeO NPs anchored on rGO (NiFeO NPs/rGO) was significantly elevated, achieving an overpotential as small as 201 mV at 10 mA cm-2 and a low Tafel slope of 68 mV dec-1 , as well as remarkable stability. Such exciting capacity for catalyzing OER prevailed over the vast majority of previously reported transition-metal electrocatalysts, even superior to numerous noble metal-containing catalysts. The electrolyzer employing NiFeO NPs/rGO and commercial Pt/C for anode and cathode could be powered by a solar cell for efficient alkaline seawater splitting. This work opens up a universal and scalable way for further advancing the intrinsic activity of energy-related materials.

2.
Angew Chem Int Ed Engl ; 59(10): 4154-4160, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31863720

RESUMEN

Even though transition-metal phosphides (TMPs) have been developed as promising alternatives to Pt catalyst for the hydrogen evolution reaction (HER), further improvement of their performance requires fine regulation of the TMP sites related to their specific electronic structure. Herein, for the first time, boron (B)-modulated electrocatalytic characteristics in CoP anchored on the carbon nanotubes (B-CoP/CNT) with impressive HER activities over a wide pH range are reported. The HER performance surpasses commercial Pt/C in both neutral and alkaline media at large current density (>100 mA cm-2 ). A combined experimental and theoretical study identified that the B dopant could reform the local electronic configuration and atomic arrangement of bonded Co and adjacent P atoms, enhance the electrons' delocalization capacity of Co atoms for high electrical conductivity, and optimize the free energy of H adsorption and H2 desorption on the active sites for better HER kinetics.

3.
Nanoscale ; 11(47): 23027-23034, 2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31774093

RESUMEN

Nanostructure engineering of heteroatom-doped carbon catalysts can greatly enhance their electrocatalytic activity by increasing the accessible active sites and beneficial physical properties (e.g., surface area, conductivity, etc.). Herein, we successfully constructed ultra-thin N,P co-doped carbon (NPC) on the surface of multi-walled carbon nanotubes (CNT) by using phytic acid (PA) as a "guide". The rich phosphate groups in PA allow them to be covalently modified on the surface of CNT by the condensation reaction and to further attract large aniline monomers through acid-base interactions, resulting in the uniform and tight bonding between polyaniline and CNT after the polymerization process. During the subsequent thermal reaction, PA also serves as a self-sacrificial dopant for the formation of ultra-thin NPC and the doping amount of P in NPC can be easily adjusted by changing the amount of PA. Due to the abundance of active sites, large electrochemically active surface area and rapid electron transfer, the developed CNT@NPC presents remarkable electrocatalytic activities for the hydrogen evolution reaction (HER) with an overpotential of 167, 440 and 304 mV to reach a current density of 10 mA cm-2 in acidic, neutral, and alkaline electrolytes, respectively. In particular, its acidic HER activity exceeds that of most reported metal-free electrocatalysts and is comparable to that of some excellent transition metal-based catalysts. The approach proposed here is of potential importance for the preparation of ideal heteroatom-doped carbon/nanocarbon composites for use in a variety of future energy conversion systems.

4.
Chem Commun (Camb) ; 55(67): 10011-10014, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31378801

RESUMEN

The doping amount of heteroatoms in N, S co-doped carbon nanotubes (CNT-NS) was accurately and extensively regulated by retarding pyrolysis-gas diffusion. The effect of the content of N and S on the hydrogen evolution activity of CNT-NS was revealed for the first time both experimentally and theoretically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA