Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 305: 135510, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35772516

RESUMEN

Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.


Asunto(s)
Shewanella , Óxido de Zinc , Anaerobiosis , Biodegradación Ambiental , Shewanella/metabolismo , Óxido de Zinc/metabolismo , Óxido de Zinc/toxicidad
2.
Chemosphere ; 291(Pt 2): 132824, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34752835

RESUMEN

Numerous studies have shown that zinc oxide nanoparticles (nZnO) have an inhibitory effect on wastewater biotreatment, where doses exceeding ambient concentrations are used. However, the effect of ambient concentrations of ZnO (<1 mg/L) on anaerobic digestion processes is not clear. Herein, this study comprehensively explored the impact of nZnO on the denitrification performance and core microbial community of activated sludge under ambient concentrations. Results showed that only 0.075 mg/L nZnO had shown a beneficial effect on nitrogen removal by activated sludge. When nZnO concentration reached 0.75 mg/L, significant enhancement of nitrate reduction and mitigation of nitrite accumulation were observed, indicating a remarkable stimulatory effect on nitrogen removal. Simultaneously, nZnO could weaken the sludge surface charge and improve the secretion of extracellular polymeric substances, thus enhancing sludge flocculation for denitrification. Microbial community analysis revealed that nZnO exposure increased the relative abundance of denitrifying bacteria, which could contribute to the reinforcement of traditional denitrification. Furthermore, exogenous addition of NH4+ significantly inhibited the accumulation of nitrite, implying that nZnO had a potential to improve the denitrification process via a partial denitrification-anammox pathway. Considering current ambient concentration, the stimulatory effect shown in our work may better represent the actual behavior of ZnO in wastewater biotreatment.


Asunto(s)
Desnitrificación , Nanopartículas , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...