Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(6): 2087-2093, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38314714

RESUMEN

The exceptional point (EP) is the critical phase transition point in parity-time (PT) symmetry systems, offering many unique physical phenomena, such as a chiral response. Achieving chiral EP in practical applications has been challenging due to the delicate balance required between gain and loss and complicated fabrication, limiting both working band and device miniaturization. Here, we proposed a nonlocal metasurface featuring orthogonal gold nanorods, where loss modulation is achieved through rod size and lattice pitch. By tuning the coupling strength, we experimentally observed the PT symmetry phase transition and chiral EP in the telecom-band. The experimental and simulated circular conversion dichroism at EP reach 0.79 and 0.99, respectively. We also demonstrated an abrupt phase flip of a specific component near EP theoretically. This work provides a feasible scheme for exploring EP in polarized space within the telecom-band, which may find applications in polarization control, wavelength division multiplexing, ultrasensitive sensing, imaging, etc.

2.
Opt Express ; 31(9): 14986-14996, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157350

RESUMEN

Gain and loss balanced parity-time (PT) inversion symmetry has been achieved across multiple platforms including acoustics, electronics, and photonics. Tunable subwavelength asymmetric transmission based on PT symmetry breaking has attracted great interest. However, due to the diffraction limit, the geometric size of an optical PT symmetric system is much larger than the resonant wavelength, which limits the device miniaturization. Here, we theoretically studied a subwavelength optical PT symmetry breaking nanocircuit based on the similarity between a plasmonic system and an RLC circuit. Firstly, the asymmetric coupling of an input signal is observed by varying the coupling strength and gain-loss ratio between the nanocircuits. Furthermore, a subwavelength modulator is proposed by modulating the gain of the amplified nanocircuit. Notably, the modulation effect near the exceptional point is remarkable. Finally, we introduce a four-level atomic model modified by the Pauli exclusion principle to simulate the nonlinear dynamics of a PT symmetry broken laser. The asymmetric emission of a coherent laser is realized by full-wave simulation with a contrast of about 50. This subwavelength optical nanocircuit with broken PT symmetry is of great significance for realizing directional guided light, modulator and asymmetric-emission laser at subwavelength scales.

3.
Materials (Basel) ; 14(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947056

RESUMEN

In recent years, conjugated polymers have become the materials of choice to fabricate optoelectronic devices, owing to their properties of high absorbance, high quantum efficiency, and wide luminescence tuning ranges. The efficient feedback mechanism in the concentric ring resonator and its circularly symmetric periodic geometry combined with the broadband photoluminescence spectrum of the conjugated polymer can generate a highly coherent output beam. Here, the detailed design of the ultralow-threshold single-mode circular distributed feedback polymer laser is presented with combined fabrication processes such as electron beam lithography and the spin-coating technique. We observe from the extinction spectra of the circular gratings that the transverse electric mode shows no change with the increase of incident beam angle. The strong enhancement of the conjugated polymer photoluminescence spectra with the circular periodic resonator can reduce the lasing threshold about 19 µJ/cm2. A very thin polymer film of about 110 nm is achieved with the spin-coating technique. The thickness of the gain medium can support only the zero-order transverse electric lasing mode. We expect that such a low threshold lasing device can find application in optoelectronic devices.

4.
Polymers (Basel) ; 11(5)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31052394

RESUMEN

The polarization and threshold of distributed feedback (DFB) polymer lasers were controlled by adjusting the cavity coupling. The cavity of DFB polymer lasers consisted of two gratings, which was fabricated by a two-beam multi-exposure holographic technique. The coupling strength of the cavity modes was tuned by changing the angle between the two gratings. The threshold of the polymer lasers decreased with reducing the coupling strength of the cavity modes. A minimum threshold was observed at the lowest coupling strength. Moreover, the azimuthally polarized output of the polymer lasers was modified by changing the cavity coupling. These results may provide additional perspectives to improve the performance of DFB polymer lasers.

5.
Polymers (Basel) ; 11(2)2019 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-30960243

RESUMEN

In this study, high-order distributed-feedback (DFB) polymer lasers were comparatively investigated. Their performance relies on multiple lasing directions and their advantages include their high manufacturing tolerances due to the large grating periods. Nine laser cavities were fabricated by spin-coating the gain polymer films onto a grating structure, which was manufactured via interference lithography that operated at the 2nd, 3rd, and 4th DFB orders. Low threshold lasing and high slope efficiency were achieved in high-order DFB polymer lasers due to the large grating groove depth and the large gain layer thickness. A high-order DFB configuration shows possible advantages, including the ability to control the lasing direction and to achieve multiple-wavelength lasers. Furthermore, our investigation demonstrates that the increase in threshold and decrease in slope efficiency with an increase in the feedback order can be limited by controlling the structural parameters.

6.
Polymers (Basel) ; 11(2)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30960313

RESUMEN

The effect of cavity structures on the tuning properties of polymer lasers was investigated in two common distributed-feedback cavities. The configurations of the two cavities are substrate/grating/active waveguide and substrate/active waveguide/grating, respectively. The polymer lasers were operated in the liquid environment, and the laser wavelength was tuned dynamically by changing the refractive index of the liquid. Polymer lasers based on the substrate/grating/active waveguide structure showed a higher tunability than those based on the substrate/active waveguide/grating structure due to a larger electric field distribution of the laser mode in the liquid environment. It is expected that these results will be useful in the development of tunable laser sources.

7.
Polymers (Basel) ; 11(4)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30960602

RESUMEN

A random laser was achieved in a polymer membrane with silver nanoflowers on a flexible substrate. The strong confinement of the polymer waveguide and the localized field enhancement of silver nanoflowers were essential for the low-threshold random lasing action. The lasing wavelength can be tuned by bending the flexible substrate. The solution phase synthesis of the silver nanoflowers enables easy realization of this type of random lasers. The flexible and high-efficiency random lasers provide favorable factors for the development of imaging and sensing devices.

8.
Opt Express ; 26(10): 13383-13389, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29801367

RESUMEN

Distributed feedback lasing and surface plasmon lasing were achieved in a single laser device. The laser cavity consisted of a four-layer structure including two metal films, a grating, and a gain material; the cavity was fabricated by combining interference lithography and metal evaporation. A hollow structure was employed to overcome the Joule losses of the metal film. The total thickness of the multilayer structure was 350 nm. The lasing threshold for this hybrid lasing was decreased significantly owing to the coupling between the SP mode in two metal films and the waveguide mode. The combination of SP lasing and distributed feedback lasing could benefit the design of biosensors, all-optical circuits, and electrically pumped devices.

9.
Opt Express ; 26(4): 4491-4497, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475299

RESUMEN

A fanshaped structure is proposed to achieve a continuously tunable polymer laser. The structure with gradual periods is fabricated by electron beam lithography, which acts as a distributed feedback cavity for the polymer laser. A light-emitting polymer is spin-coated on the cavity to form an active layer. The pump beam is focused by a cylindrical lens to a narrow stripe on the sample surface. When the position of the pump stripe on the fanshaped cavity is changed from long period (370 nm) to short period (340 nm) and vice versa, the output wavelength of the laser is continuously tuned from 584 nm to 552 nm. Tuning behavior can be interpreted by the Bragg condition. These results can be used to explore compact laser sources.

10.
Opt Express ; 26(24): 32048-32054, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30650783

RESUMEN

Tunable distributed feedback polymer lasing was achieved in a metal-dielectric hybrid cavity. The laser device consisted of a double-layer grating structure and a polymer membrane. Interference lithography and oblique evaporation techniques were employed in fabricating the cavity. The photoresist grating was fabricated by interference lithography. Silver was obliquely evaporated onto the photoresist grating, forming a double-layer grating structure. Then a free-standing polymer membrane was attached on the structure. Under optically pumped conditions, low-threshold lasing was obtained, due to the plasmonic enhancement. The lasing wavelength can be tuned by changing the silver grating's thickness, which results from the variance of the effective refractive index of the cavity. These results can be used to design high-efficiency laser devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...