Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39275595

RESUMEN

Lower-limb exoskeletons (LLEs) can provide rehabilitation training and walking assistance for individuals with lower-limb dysfunction or those in need of functionality enhancement. Adapting and personalizing the LLEs is crucial for them to form an intelligent human-machine system (HMS). However, numerous LLEs lack thorough consideration of individual differences in motion planning, leading to subpar human performance. Prioritizing human physiological response is a critical objective of trajectory optimization for the HMS. This paper proposes a human-in-the-loop (HITL) motion planning method that utilizes surface electromyography signals as biofeedback for the HITL optimization. The proposed method combines offline trajectory optimization with HITL trajectory selection. Based on the derived hybrid dynamical model of the HMS, the offline trajectory is optimized using a direct collocation method, while HITL trajectory selection is based on Thompson sampling. The direct collocation method optimizes various gait trajectories and constructs a gait library according to the energy optimality law, taking into consideration dynamics and walking constraints. Subsequently, an optimal gait trajectory is selected for the wearer using Thompson sampling. The selected gait trajectory is then implemented on the LLE under a hybrid zero dynamics control strategy. Through the HITL optimization and control experiments, the effectiveness and superiority of the proposed method are verified.


Asunto(s)
Electromiografía , Dispositivo Exoesqueleto , Marcha , Extremidad Inferior , Caminata , Humanos , Electromiografía/métodos , Marcha/fisiología , Extremidad Inferior/fisiología , Caminata/fisiología , Algoritmos , Biorretroalimentación Psicológica/métodos , Masculino , Adulto , Fenómenos Biomecánicos/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38776206

RESUMEN

3-D lane detection is a challenging task due to the diversity of lanes, occlusion, dazzle light, and so on. Traditional methods usually use highly specialized handcrafted features and carefully designed postprocessing to detect them. However, these methods are based on strong assumptions and single modal so that they are easily scalable and have poor performance. In this article, a multimodal fusion network (MFNet) is proposed through using multihead nonlocal attention and feature pyramid for 3-D lane detection. It includes three parts: multihead deformable transformation (MDT) module, multidirectional attention feature pyramid fusion (MA-FPF) module, and top-view lane prediction (TLP) ones. First, MDT is presented to learn and mine multimodal features from RGB images, depth maps, and point cloud data (PCD) for achieving optimal lane feature extraction. Then, MA-FPF is designed to fuse multiscale features for presenting the vanish of lane features as the network deepens. Finally, TLP is developed to estimate 3-D lanes and predict their position. Experimental results on the 3-D lane synthetic and ONCE-3DLanes datasets demonstrate that the performance of the proposed MFNet outperforms the state-of-the-art methods in both qualitative and quantitative analyses and visual comparisons.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38039179

RESUMEN

Magnetorheological (MR) fluid exhibits the ability to modulate its shear state through variations in magnetic field intensity, and is widely used for applications requiring damping. Traditional MR dampers use the current in the coil to adjust the magnetic field strength, but the accumulated heat can cause the magnetic field strength to decay if it works for a long time. In order to deal with this shortcoming, a novel MR damper is proposed in this paper, which is based on a variable displacement permanent magnet to adjust the output resistance torque and applied to an exoskeleton joint for human load transfer assistance. A finite element model is used to determine the size parameters of the magnet and separator, so that the maximum output torque is optimal and the torque is uniformly distributed with the magnet displacement. The MR damper was characterized and calibrated on the experimental bench to make it controllable. The novel design enables the torque mass density of the MR damper to reach 8.83Nmm/g, the torque volume density to reach 48.7N/mm2, and has stability for long-term operation. Based on the torque control method proposed, a preliminary human experiment is conducted. The ground reaction force (GRF) data of the subjects is analyzed here, which represents the effect of load transfer to the exoskeleton. Compared with no exoskeleton, the GRF with exoskeleton is significantly reduced: the peak GRF in early stance phase is reduced by 24.14%, and in late stance phase is reduced by 19.77%. Based on our net load benefit (NLB) and net force benefit (NFB) evaluation indicators, the effectiveness of the proposed MR damper exoskeleton for human weight bearing assistance is established.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Imanes , Extremidad Inferior , Fenómenos Mecánicos
4.
Artículo en Inglés | MEDLINE | ID: mdl-35030082

RESUMEN

This paper presents the E-LEG, a novel semi-passive lower-limb exoskeleton for worker squatting assistance, with motorized tuning of the assistive squatting height. Compared with other passive industrial exoskeletons for the lower-limbs, the E-LEG presents novel design features namely inertial sensor for measuring the tilt angle of thigh and the novel electromagnetic switch for adjusting squat height. These features could enhance the effectiveness of the system. In addition to the introduction to exoskeleton design, this paper also reports the systematic experimental evaluation of human subjects. With the assistance of different conditions, the variability of muscular activity was evaluated in long-term static squatting task. The set of metrics to evaluate the effect of the device included leg muscle activity, plantar pressure fluctuation, plantar pressure center fluctuation and gait angles. Results show that the exoskeleton can reduce the muscular activity of the user during squatting, and it will have little affect the normal gait of the user during walking. In this study, we found that the E-LEG exoskeleton has potential effectiveness in reducing the muscular strain on long-term continuous squatting activities.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Pierna/fisiología , Extremidad Inferior , Caminata
5.
Artículo en Inglés | MEDLINE | ID: mdl-37015643

RESUMEN

Surface defect detection plays an essential role in industry, and it is challenging due to the following problems: 1) the similarity between defect and nondefect texture is very high, which eventually leads to recognition or classification errors and 2) the size of defects is tiny, which are much more difficult to be detected than larger ones. To address such problems, this article proposes an adaptive image segmentation network (AIS-Net) for pixelwise segmentation of surface defects. It consists of three main parts: multishuffle-block dilated convolution (MSDC), dual attention context guidance (DACG), and adaptive category prediction (ACP) modules, where MSDC is designed to merge the multiscale defect features for avoiding the loss of tiny defect feature caused by model depth, DACG is designed to capture more contextual information from the defect feature map for locating defect regions and obtaining clear segmentation boundaries, and ACP is used to make classification and regression for predicting defect categories. Experimental results show that the proposed AIS-Net is superior to the state-of-the-art approaches on four actual surface defect datasets (NEU-DET: 98.38% ± 0.03%, DAGM: 99.25% ± 0.02%, Magnetic-tile: 98.73% ± 0.13%, and MVTec: 99.72% ± 0.02%).

6.
Front Neurorobot ; 15: 692539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795571

RESUMEN

Gait phase classification is important for rehabilitation training in patients with lower extremity motor dysfunction. Classification accuracy of the gait phase also directly affects the effect and rehabilitation training cycle. In this article, a multiple information (multi-information) fusion method for gait phase classification in lower limb rehabilitation exoskeleton is proposed to improve the classification accuracy. The advantage of this method is that a multi-information acquisition system is constructed, and a variety of information directly related to gait movement is synchronously collected. Multi-information includes the surface electromyography (sEMG) signals of the human lower limb during the gait movement, the angle information of the knee joints, and the plantar pressure information. The acquired multi-information is processed and input into a modified convolutional neural network (CNN) model to classify the gait phase. The experiment of gait phase classification with multi-information is carried out under different speed conditions, and the experiment is analyzed to obtain higher accuracy. At the same time, the gait phase classification results of multi-information and single information are compared. The experimental results verify the effectiveness of the multi-information fusion method. In addition, the delay time of each sensor and model classification time is measured, which shows that the system has tremendous real-time performance.

7.
Soc Sci Med ; 255: 113036, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32657272

RESUMEN

This comment discusses the contribution of population movement to the spread of COVID-19, with a reference to the spread of SARS 17 years ago. We argue that the changing geography of migration, the diversification of jobs taken by migrants, the rapid growth of tourism and business trips, and the longer distance taken by people for family reunion are what make the spread of COVID-19 so differently from that of SARS. These changes in population movement are expected to continue. Hence, new strategies in disease prevention and control should be taken accordingly, which are also proposed in the comment.


Asunto(s)
Infecciones por Coronavirus/transmisión , Migración Humana/estadística & datos numéricos , Neumonía Viral/transmisión , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Humanos , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/transmisión
8.
Sensors (Basel) ; 20(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098264

RESUMEN

High-density surface electromyography (HD-sEMG) and deep learning technology are becoming increasingly used in gesture recognition. Based on electrode grid data, information can be extracted in the form of images that are generated with instant values of multi-channel sEMG signals. In previous studies, image-based, two-dimensional convolutional neural networks (2D CNNs) have been applied in order to recognize patterns in the electrical activity of muscles from an instantaneous image. However, 2D CNNs with 2D kernels are unable to handle a sequence of images that carry information concerning how the instantaneous image evolves with time. This paper presents a 3D CNN with 3D kernels to capture both spatial and temporal structures from sequential sEMG images and investigates its performance on HD-sEMG-based gesture recognition in comparison to the 2D CNN. Extensive experiments were carried out on two benchmark datasets (i.e., CapgMyo DB-a and CSL-HDEMG). The results show that, where the same network architecture is used, 3D CNN can achieve a better performance than 2D CNN, especially for CSL-HDEMG, which contains the dynamic part of finger movement. For CapgMyo DB-a, the accuracy of 3D CNN was 1% higher than 2D CNN when the recognition window length was equal to 40 ms, and was 1.5% higher when equal to 150 ms. For CSL-HDEMG, the accuracies of 3D CNN were 15.3% and 18.6% higher than 2D CNN when the window length was equal to 40 ms and 150 ms, respectively. Furthermore, 3D CNN achieves a competitive performance in comparison to the baseline methods.


Asunto(s)
Electromiografía/métodos , Redes Neurales de la Computación , Aprendizaje Profundo , Gestos , Humanos
9.
Sensors (Basel) ; 20(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947605

RESUMEN

In the field of welding robotics, visual sensors, which are mainly composed of a camera and a laser, have proven to be promising devices because of their high precision, good stability, and high safety factor. In real welding environments, there are various kinds of weld joints due to the diversity of the workpieces. The location algorithms for different weld joint types are different, and the welding parameters applied in welding are also different. It is very inefficient to manually change the image processing algorithm and welding parameters according to the weld joint type before each welding task. Therefore, it will greatly improve the efficiency and automation of the welding system if a visual sensor can automatically identify the weld joint before welding. However, there are few studies regarding these problems and the accuracy and applicability of existing methods are not strong. Therefore, a weld joint identification method for visual sensor based on image features and support vector machine (SVM) is proposed in this paper. The deformation of laser around a weld joint is taken as recognition information. Two kinds of features are extracted as feature vectors to enrich the identification information. Subsequently, based on the extracted feature vectors, the optimal SVM model for weld joint type identification is established. A comparative study of proposed and conventional strategies for weld joint identification is carried out via a contrast experiment and a robustness testing experiment. The experimental results show that the identification accuracy rate achieves 98.4%. The validity and robustness of the proposed method are verified.

10.
Sensors (Basel) ; 20(2)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963751

RESUMEN

Aiming at the requirement of rapid recognition of the wearer's gait stage in the process of intelligent hybrid control of an exoskeleton, this paper studies the human body mixed motion pattern recognition technology based on multi-source feature parameters. We obtain information on human lower extremity acceleration and plantar analyze the relationship between these parameters and gait cycle studying the motion state recognition method based on feature evaluation and neural network. Based on the actual requirements of exoskeleton per use, 15 common gait patterns were determined. Using this, the studies were carried out on the time domain, frequency domain, and energy feature extraction of multi-source lower extremity motion information. The distance-based feature screening method was used to extract the optimal features. Finally, based on the multi-layer BP (back propagation) neural network, a nonlinear mapping model between feature quantity and motion state was established. The experimental results showed that the recognition accuracy in single motion mode can reach up to 98.28%, while the recognition accuracy of the two groups of experiments in mixed motion mode was found to be 92.7% and 97.4%, respectively. The feasibility and effectiveness of the model were verified.


Asunto(s)
Dispositivo Exoesqueleto , Extremidad Inferior/fisiología , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Acelerometría/métodos , Marcha/fisiología , Humanos , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA