Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1376151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633666

RESUMEN

The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.

2.
Food Chem ; 445: 138799, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401313

RESUMEN

A novel 3D bio-printing vascular microtissue biosensor was developed to detect fish parvalbumin quickly. The graphite rod electrode was modified with gold and copper organic framework (Cu-MOF) to improve the sensor properties. Polydopamine-modified multi-wall carbon nanotubes (PDA-MWCNT) were mixed with gelatin methacryloyl (GelMA) to prepare a conductive hydrogel. The conductive hydrogel was mixed with mast cells and endothelial cells to produce a bio-ink for 3D bioprinting. High throughput and standardized preparation of vascular microtissue was performed by stereolithography 3D bioprinting. The vascular microtissue was immobilized on the modified electrode to construct the microtissue sensor. The biosensor's peak current was positively correlated with the fish parvalbumin concentration, and the detection linear concentration range was 0.1 ∼ 2.5 µg/mL. The standard curve equation was IDPV(µA) = 31.30 + 5.46 CPV(µg/mL), the correlation coefficient R2 was 0.990 (n = 5), and the detection limit was 0.065 µg/mL. These indicated a biomimetic microtissue sensor detecting fish parvalbumin has been successfully constructed.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Animales , Parvalbúminas , Nanotubos de Carbono/química , Células Endoteliales , Hidrogeles/química , Gelatina/química , Peces , Impresión Tridimensional
3.
J Appl Toxicol ; 44(6): 863-873, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38311468

RESUMEN

Although the medicinal properties of colchicine (COL) have been widely known for centuries, its toxicity has been the subject of controversy. The narrow therapeutic window causes COL to induce gastrointestinal adverse effects even when taken at recommended doses, mainly manifested as nausea, vomiting, and diarrhea. However, the mechanism of COL-induced gastrointestinal toxic reactions remains obscure. In the present study, the mice were dosed with COL (2.5 mg/kg b.w./day) for a week to explore the effect of COL on bile acid metabolism and the mechanism of COL-induced diarrhea. The results showed that COL treatment affected liver biochemistry in mice, resulting in a significant down-regulation of the mRNA expression levels of bile acid biosynthesis regulators Cyp7a1, Cyp8b1, Cyp7b1, and Cyp27a1 in liver tissues. The mRNA expression levels of bile acid transporters Ntcp, Oatp1, Mrp2, Ibabp, Mrp3, Osta, and Ostb in liver and ileum tissues were also significantly down-regulated. In addition, COL treatment significantly inhibited the mRNA expression levels of Fxr and its downstream target genes Shp, Lrh1, and Fgf15 in liver and ileum tissues, affecting the feedback regulation of bile acid biosynthesis. More importantly, the inhibition of COL on bile acid transporters in ileal and hepatic tissues affected bile acid recycling in the ileum as well as their reuptake in the liver, leading to a significantly increased accumulation of bile acids in the colon, which may be an important cause of diarrhea. In conclusion, our study revealed that COL treatment affected bile acid biosynthesis and enterohepatic circulation, thereby disrupting bile acid metabolic homeostasis in mice.


Asunto(s)
Ácidos y Sales Biliares , Colchicina , Circulación Enterohepática , Homeostasis , Hígado , Animales , Ácidos y Sales Biliares/metabolismo , Circulación Enterohepática/efectos de los fármacos , Colchicina/toxicidad , Homeostasis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Masculino , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/genética , Íleon/efectos de los fármacos , Íleon/metabolismo , Diarrea/inducido químicamente
4.
Sci Total Environ ; 903: 166057, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553056

RESUMEN

Microplastics (MPs) are inevitably oxidized in the environment, however, to date, no studies have discussed the biological toxicity of oxidized polyethylene (Ox-PE) MPs. In this study, oxidized low-density polyethylene (Ox-LDPE), a representative Ox-PE, was prepared using a selective oxidation method. The difference in toxicity between LDPE-MPs and Ox-LDPE-MPs were evaluated in C57BL/6 mice and Caco-2 cells. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopy analyses revealed that some hydrocarbon-containing groups were transformed into carboxyl and ketone groups during selective oxidation. In vivo experiment results showed that LDPE-MPs and Ox-LDPE-MPs exists in the intestinal (duodenum and colon) of mice, and Ox-LDPE-MPs caused more severe intestinal histological changes, oxidative stress, and inflammatory response. The gut microbiota data showed that the relative abundance of Lactobacillus decreased significantly in the LDPE-MP- and Ox-LDPE-MP-exposed groups (P < 0.05). The predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway suggested that exposure to LDPE-MPs or Ox-LDPE-MPs inhibited glycan biosynthesis and metabolism in the flora (P < 0.05). In vitro experiment results showed that selective oxidation to LDPE promoted its uptake by cells and aggravated adverse effects on cells, including reduced cell viability, damaged cell membrane, oxidative stress, and mitochondrial depolarization. The major mechanism of the increased toxicity of Ox-LDPE-MPs may be its easier accumulation and the ionic effect of oxygen-containing functional groups. Overall, these findings provide insights on the differences in toxicity between LDPE-MPs and Ox-LDPE-MPs. They also provide new perspectives for understanding the biohazards of MPs, which are necessary to accurately assess the potential environmental and health risks of these plastic pollutants.

6.
Integr Zool ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430430

RESUMEN

The intestinal microbiota help regulate hibernation in vertebrates. However, it needs to be established how hibernation modulates the gut microbiome and intestinal metabolism. In the present study, we used an artificial hibernation model to examine the responses of the gut microbiota of the Strauchbufo raddei to the environmental changes associated with this behavior. Hibernation significantly lowered the diversity of the microbiota and altered the microbial community of the gut. Proteobacteria, Firmicutes, and Bacteroidota were the major bacterial phyla in the intestines of S. raddei. However, Firmicutes and Proteobacteria predominated in the gut of active and hibernating S. raddei, respectively. Certain bacterial genera such as Pseudomonas, Vibrio, Ralstonia, and Rhodococcus could serve as biomarkers distinguishing hibernating and non-hibernating S. raddei. The gut microbiota was more resistant to environmental stress in hibernating than active S. raddei. Moreover, metabolomics revealed that metabolites implicated in fatty acid biosynthesis were highly upregulated in the intestines of hibernating S. raddei. The metabolites that were enriched during hibernation enabled S. raddei to adapt to the low temperatures and the lack of exogenous food that are characteristic of hibernation. A correlation analysis of the intestinal microbiota and their metabolites revealed that the gut microbiota might participate in the metabolic regulation of hibernating S. raddei. The present study clarified the modifications that occur in the intestinal bacteria and their symbiotic relationship with their host during hibernation. These findings are indicative of the adaptive changes in the metabolism of amphibians under different environmental conditions.

7.
Front Public Health ; 11: 1119774, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026121

RESUMEN

Purpose: To reveal relationship between air pollution exposure and osteoporosis (OP) risk. Methods: Based on large-scale data from the UK Biobank, we evaluated the relationship between OP risk and several air pollutants. Then air pollution scores (APS) were constructed to assess the combined effects of multiple air pollutants on OP risk. Finally, we constructed a genetic risk score (GRS) based on a large genome-wide association study of femoral neck bone mineral density and assessed whether single or combined exposure to air pollutants modifies the effect of genetic risk on OP and fracture risk. Results: PM2.5, NO2, NOx, and APS were significantly associated with an increased risk of OP/fracture. OP and fracture risk raised with increasing concentrations of air pollutants: compared to the lowest APS quintile group, subjects in the highest quintile group had a hazard ratio (HR) (95% CI) estimated at 1.140 (1.072-1.213) for OP and 1.080 (1.026-1.136) for fracture. Moreover, participants with low GRS and the highest air pollutant concentration had the highest risk of OP, the HRs (95% CI) of OP were 1.706 (1.483-1.964), 1.658 (1.434-1.916), 1.696 (1.478-1.947), 1.740 (1.506-2.001) and 1.659 (1.442-1.908), respectively, for PM2.5, PM10, PM2.5-10, NO2, and NOx. Similar results were also observed for fractures. Finally, we assessed the joint effect of APS and GRS on the risk of OP. Participants with higher APS and lower GRS had a higher risk of developing OP. Similar results were observed in the joint effect of GRS and APS on fracture. Conclusions: We found that exposure to air pollution, individually or jointly, could improve the risk of developing OP and fractures, and increased the risk by interacting with genetic factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Osteoporosis , Humanos , Estudios Prospectivos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Osteoporosis/epidemiología , Osteoporosis/genética , Reino Unido/epidemiología
8.
Food Res Int ; 168: 112778, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120227

RESUMEN

In this paper, a novel "liver lobule" microtissue biosensor based on 3D bio-printing is developed to rapidly determine aflatoxin B1 (AFB1). Methylacylated Hyaluronic acid (HAMA) hydrogel, HepG2 cells, and carbon nanotubes are used to construct "liver lobule" models. In addition, 3D bio-printing is used to perform high-throughput and standardized preparation in order to simulate the organ morphology and induce functional formation. Afterwards, based on the electrochemical rapid detection technology, a 3D bio-printed "liver lobule" microtissue is immobilized on the screen-printed electrode, and the mycotoxin is detected by differential pulse voltammetry (DPV). The DPV response increases with the concentration of AFB1 in the range of 0.1-3.5 µg/mL. The linear detection range is 0.1-1.5 µg/mL and the calculated lowest detection limit is 0.039 µg/mL. Thus, this study develops a new mycotoxin detection method based on the 3D printing technology, which has high stability and reproducibility. It has wide application prospects in the field of detection and evaluation of food hazards.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos , Impresión Tridimensional , Técnicas Biosensibles/métodos
9.
Aquat Toxicol ; 258: 106477, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36948065

RESUMEN

Nitrate (NO3-) is one of the ubiquitous environmental chemicals which multiplies negative impacts on aquatic life such as amphibian larvae. However, the data involving the dynamics of amphibians in response to NO3-N are scarce. This study investigated the effects of NO3-N on locomotor ability, growth performance, oxidative stress parameters, intestinal histology, and intestinal microbiota of Bufo raddei Strauch tadpoles. The tadpoles were chronically exposed to different concentrations of NO3-N (10, 50, 100, and 200 mg/L) from Gosner stage 26 to 38. Our results revealed that NO3-N exposure caused significantly reduced body weight and length, impaired locomotor activity, and severe oxidative damage to liver tissue. Moreover, the high NO3-N (50, 100, and 200 mg/L) exposure caused irregular arrangement and indistinct cell borders of mucosal epithelial cells in the tadpoles intestine. The NO3-N exposure significantly changed the structure of the intestinal microbiota. The phylum Cyanobacteria occupy the main niche of intestinal microbes and have a certain negative correlation with the growth and motility of tadpoles. In addition, the functional prediction revealed that NO3-N exposure obviously downregulated the metabolism of enzyme families in tadpoles. Our comprehensive research shows the toxicity of NO3-N exposure in B. raddei Strauch, explores the potential links between development and intestinal microbiota of tadpole, and provides a new framework for the potential health risk of nitrate in amphibians.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Larva , Nitratos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Bufonidae , Intestinos/microbiología
10.
J Exp Zool B Mol Dev Evol ; 340(4): 316-328, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36148637

RESUMEN

Yak has evolved specific adaptative mechanisms to high-altitude environment. Up to date, only a few studies reported the DNA methylation in yak. In the present study, genome-wide DNA methylome and transcriptome profiles in lung, mammary, and biceps brachii muscle tissues were compared between yak and three cattle breeds (Tibetan cattle, Sanjiang cattle, and Holstein cattle). The association between differentially expressed genes (DEGs) and differentially methylated regions (DMRs) was analyzed, and the biological functions of DEGs potentially driven by DMRs were explored by KEGG enrichment analysis. Finally, we found that yak-specific DMRs-driven DEGs were mainly involved in neuromodulation, respiration, lung development, blood pressure regulation, cardiovascular protection, energy metabolism, DNA repair, and immune functions. The higher levels of the key genes associated with these functions were observed in yak than in cattle, suggesting that DNA methylation might regulate these genes. Overall, the present study contributes basic data at the DNA methylation level to further understand the physiological metabolism in yak.


Asunto(s)
Metilación de ADN , Transcriptoma , Animales , Bovinos/genética , Genoma , Pulmón , ARN Mensajero
11.
BMC Genomics ; 23(1): 833, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522700

RESUMEN

BACKGROUND: The yak is the most important livestock in the Qinghai-Tibet Plateau, and body weight directly affects the economic values of yak. Up to date, the genome-wide profiling of single-nucleotide polymorphisms (SNPs) associating with body weight has not been reported in yak. In the present study, the SNPs in 480 yaks from three breeds were analyzed using the commercial high-density (600 K) yak SNP chips. RESULTS: The results identified 12 and 4 SNPs potentially associated with body weight in male and female yaks, respectively. Among them, 9 and 2 SNPs showed significant difference in yak body weight between different genotypes at each locus in male and female yaks, respectively. Further exploration found 33 coding genes within the 100 kbp upstream or downstream to the SNP loci, which might be potentially affected by the variation of SNPs. Among them, G protein-coupled receptor kinase 4 (GRK4) might be potentially affected by the SNP AX-174555047, which has been reported to affect the functioning of two body-weight associated hormones (parathyroid hormone, PTH, and adrenomedullin, ADM). Determination of PTH and ADM levels in yak revealed positive relationship between PTH level and body weight, negative relationship between ADM level and body weight along with the variation of AX-174555047 mutation. CONCLUSIONS: These results suggested that the SNP AX-174555047 might potentially affect body weight through mediating GRK4 expression and then PTH and ADM functioning. Thus, the SNP AX-174555047 might be used as a biomarker for molecular breeding of yak. More investigations are required to validate this point.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Masculino , Bovinos/genética , Femenino , Peso Corporal/genética , Genotipo , Tibet
12.
Physiol Genomics ; 54(12): 514-525, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342051

RESUMEN

Rumen microorganisms play important roles in the healthy growth of yaks. This study investigated changes in yak rumen microbiome during natural grazing at the warm seasons and supplementary feeding at cold seasons. High-throughput sequencing of 16S rRNA and metagenome analysis were conducted to investigate the structures and functions of yak rumen microbial communities. The results indicated that Bacteroidetes and Firmicutes were the most abundant phyla. In addition, Bacteroidetes might play a more important role than Firmicutes during the supplementary feeding stage (spring and winter), but less during natural grazing stage (summer and autumn). KEGG analysis showed that the amino sugar and nucleotide sugar metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, starch and sucrose metabolism, and fructose and mannose metabolism were the main pathways in the microbial community, which were significantly different between seasons. The carbohydrate-active enzymes (CAZyme) annotation revealed that cellulose was an important carbon source for microorganisms in yak rumen. Glycoside hydrolases (GHs) were the most abundant class of CAZymes, followed by glycosyl transferases (GTs), which were important to digestion of oil, cellulose, and hemicellulose in food. These results contribute to the understanding of microbial components and functions in yak rumen.


Asunto(s)
Microbiota , Rumen , Animales , Bovinos , ARN Ribosómico 16S/genética , Microbiota/fisiología , Dieta , Bacteroidetes/genética , Celulosa
13.
Chem Biol Interact ; 368: 110193, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179773

RESUMEN

Colchicine (COL) has been used to treat gout for over a millennium, but its medicinal use has been controversial due to its potent toxicity in the gastrointestinal tract. Nausea, vomiting, and diarrhea are the most prominent external manifestations of COL gastrointestinal toxicity, but the cause of these adverse events remains obscure. In this study, the mice were exposed to COL (2.5 mg/kg b.w./day) for one week to study the mechanism of COL-induced diarrhea from the perspective of intestinal metabolism. The results showed that COL exposure disturbed intestinal metabolic homeostasis, resulting in a significant accumulation of 116 metabolites and, conversely, significant depletion of 64 metabolites, with the number of differential metabolites being one-eighth of the total metabolites (180/1445). Also, it was found that cAMP, Adenosine 5'-monophosphate, GDP, Inositol, and Cortisol are core metabolites that play crucial roles in COL-induced metabolic disorders. These metabolites could be used as biomarkers to differentiate control and COL-treated groups, implying that these metabolites may be closely related to COL-induced diarrhea. Furthermore, changes in the metabolic pathways (Purine metabolism, biosynthesis and metabolism of aromatic amino acids, and Bile secretion) involved in these five core metabolites increased the toxic load in the gut, which was the culprit leading to intestinal metabolic disorders. In addition, the abnormal bile secretion caused by COL exposure may play an important role in COL-induced diarrhea. In conclusion, our study opens new avenues for understanding the mechanisms of COL-induced gastrointestinal adverse reactions and broadens the scientific horizon on the interactions between COL and host metabolism.


Asunto(s)
Colchicina , Metaboloma , Ratones , Animales , Colchicina/toxicidad , Colchicina/análisis , Heces/química , Diarrea/inducido químicamente , Homeostasis , Metabolómica
15.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 485-493, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34494310

RESUMEN

Yaks display unique properties of the lung and heart, enabling their adaptation to high-altitude environments, but the underlying molecular mechanisms are still largely unknown. In the present study, the proteome differences in lung and heart tissues were compared between yak (Bos grunniens) and three cattle strains (Bos taurus, Holstein, Sanjiang and Tibetan cattle) using the sequential window acquisition of all theoretical mass spectra/data-independent acquisition (SWATH/DIA) proteomic method. In total, 51,755 peptides and 7215 proteins were identified. In the lung tissue, there were 162, 310 and 118 differential abundance proteins (DAPs) in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. In the heart tissue, there were 71, 57 and 78 DAPs in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DAPs were enriched for the retinol metabolism and toll-like receptor categories in lung tissue. The changes in these two pathways may regulate hypoxia-induced factor and immune function in yaks. Moreover, DAPs in heart tissues were enriched for cardiac muscle contraction, Huntington's disease, chemical carcinogenesis and drug metabolism-cytochrome P450. Further exploration indicated that yaks may alter cardiac function through regulation of type 2 ryanodine receptor (RyR2) and Ca2+ -release channels. The present results are useful to further develop an understanding of the mechanisms underlying adaptation of animals to high-altitude conditions.


Asunto(s)
Altitud , Proteómica , Adaptación Fisiológica , Animales , Bovinos , Genoma , Proteoma
16.
Toxicology ; 461: 152908, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34453961

RESUMEN

Colchicine (COL), an ancient and well-known drug, has been used in clinical practice for centuries. On the other hand, COL has also attracted extensive concerns for its potent toxic effects, especially gastrointestinal adverse reactions (nausea, vomiting, and diarrhea) before clinical symptoms relief. In this study, we used a rodent model to study the effects of COL on gastric mucosa and associated microbiota. The mice were exposed to various concentrations of COL (0.1, 0.5, and 2.5 mg kg-1 body weight per day) for 7 days, and the results showed that COL treatment caused severe gastric mucosal damage, accompanied by a significant decrease in gastric mucosal proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). The 16S rRNA gene sequencing revealed that COL significantly perturbed the gastric microbiota composition and reduced the gastric microbiota diversity in mice. Also, we identified bacterial biomarkers associated with diarrhea, including phylum Firmicutes, class Bacilli, order Lactobacillales, family Lactobacillaceae, genu Lactobacillus, and genu Blautia, suggesting that COL-triggered adverse reactions are closely related to gastric microbial perturbations. Our findings open new paths for understanding the mechanism of COL-related adverse gastrointestinal reactions, broadening the scientific view on the interaction between drugs and host gastrointestinal microbiota.


Asunto(s)
Colchicina/toxicidad , Mucosa Gástrica/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Supresores de la Gota/toxicidad , Administración Oral , Animales , Animales no Consanguíneos , Colchicina/administración & dosificación , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Mucosa Gástrica/parasitología , Microbioma Gastrointestinal/genética , Supresores de la Gota/administración & dosificación , Masculino , Ratones , ARN Ribosómico 16S/genética
18.
Exp Eye Res ; 210: 108700, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245755

RESUMEN

Age-related macular degeneration (AMD) is a complex retinal disease with no viable treatment strategy. The causative mechanistic pathway for this disease is not yet clear. Therefore, it is highly warranted to screen effective drugs to treat AMD. Rapamycin are known to inhibit inflammation and has been widely used in the clinic as an immunosuppressant. This study aimed to investigate the protective effect of rapamycin on the AMD retinal degeneration model. The AMD models were established by injection of 35 mg/kg sodium iodate (NaIO3) into the tail vein. Then the treated mice intraperitoneally received rapamycin (2 mg/kg) once a day. The histomorphological analysis showed that rapamycin could inhibit retinal structure damage and apoptosis. Experiments revealed that rapamycin significantly attenuated inflammatory response and oxidative stress. Our experimental results demonstrated that rapamycin has protected the retinal against degeneration induced by NaIO3. The therapeutic effect was more significant after 7 days of treatment. Therefore, our study potentially provides a powerful experimental support for the treatment of AMD.


Asunto(s)
Modelos Animales de Enfermedad , Inmunosupresores/uso terapéutico , Degeneración Retiniana/prevención & control , Epitelio Pigmentado de la Retina/efectos de los fármacos , Sirolimus/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Etiquetado Corte-Fin in Situ , Inyecciones Intraperitoneales , Yodatos/toxicidad , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Retina/patología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Rodopsina/metabolismo , cis-trans-Isomerasas/metabolismo
19.
Front Microbiol ; 12: 807512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222306

RESUMEN

Rumen microbiota are closely linked to feed utilization and environmental adaptability of ruminants. At present, little is known about the influence of different extreme environments on the rumen microbiota of yaks. In this study, 30 ruminal fluid samples from 30 healthy female yaks (average 280 kg of BW) in 5-8 years of life were collected from three regions in Tibet, China, and compared by gas chromatography and high-throughput sequencing. Results showed that propionic acid, butyric acid, and total volatile fatty acids were significantly (p < 0.05) higher, while microbial abundance and diversity were significantly (p < 0.05) lower, in the Nagqu (4,500 m altitude) compared with the Xigatse (4,800 m altitude) and Lhasa (3,800 m altitude) regions. Principal coordinate analysis revealed significant (p < 0.05) differences in rumen microbial composition of yaks from different regions. Specifically, Bacteroidetes and Firmicutes were identified by linear discriminant analysis effect size (LDA > 3) as being the signature phyla for Xigatse and Nagqu regions, respectively. In addition, the relative abundance of Rikenellaceae_RC9_gut_group, Quinella, Prevotellaceae_UCG-003, Lachnospiraceae_NK3A20_group, Papillibacter, Ruminococcaceae_UCG-010, Prevotellaceae_NK3B31_group, and Ruminococcaceae_UCG-005 correlated with altitude and rumen fermentation parameters (p < 0.05). Finally, the predicted function of rumen microbiota was found to differ between regions (p < 0.05). In summary, our results reveal that regions located at different altitudes influence microbiota composition and fermentation function of yaks' rumen. The present findings can provide mechanistic insights on yak adaptation to high altitudes and improve the feeding efficiency of these animals in extreme regions.

20.
Mol Ecol Resour ; 21(1): 201-211, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32745324

RESUMEN

Yak is an important livestock animal for the people indigenous to the harsh, oxygen-limited Qinghai-Tibetan Plateau and Hindu Kush ranges of the Himalayas. The yak genome was sequenced in 2012, but its assembly was fragmented because of the inherent limitations of the Illumina sequencing technology used to analyse it. An accurate and complete reference genome is essential for the study of genetic variations in this species. Long-read sequences are more complete than their short-read counterparts and have been successfully applied towards high-quality genome assembly for various species. In this study, we present a high-quality chromosome-scale yak genome assembly (BosGru_PB_v1.0) constructed with long-read sequencing and chromatin interaction technologies. Compared to an existing yak genome assembly (BosGru_v2.0), BosGru_PB_v1.0 shows substantially improved chromosome sequence continuity, reduced repetitive structure ambiguity, and gene model completeness. To characterize genetic variation in yak, we generated de novo genome assemblies based on Illumina short reads for seven recognized domestic yak breeds in Tibet and Sichuan and one wild yak from Hoh Xil. We compared these eight assemblies to the BosGru_PB_v1.0 genome, obtained a comprehensive map of yak genetic diversity at the whole-genome level, and identified several protein-coding genes absent from the BosGru_PB_v1.0 assembly. Despite the genetic bottleneck experienced by wild yak, their diversity was nonetheless higher than that of domestic yak. Here, we identified breed-specific sequences and genes by whole-genome alignment, which may facilitate yak breed identification.


Asunto(s)
Bovinos/genética , Variación Genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Adaptación Biológica , Animales , Cruzamiento , China , Cromosomas , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...