Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 147: 107360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604019

RESUMEN

HSA (human serum albumin), a most abundant protein in blood serum, plays a key role in maintaining human health. Abnormal HSA level is correlated with many diseases, and thus has been used as an essential biomarker for therapeutic monitoring and biomedical diagnosis. Development of small-molecule fluorescent probes allowing the selective and sensitive recognition of HSA in in vitro and in vivo is of fundamental importance in basic biological research as well as medical diagnosis. Herein, we reported a series of new synthesized fluorescent dyes containing D-π-A constitution, which exhibited different optical properties in solution and solid state. Among them, dye M-H-SO3 with a hydrophilic sulfonate group at electron-acceptor part displayed selectivity for discrimination of HSA from BSA and other enzymes. Upon binding of dye M-H-SO3 with HSA, a significant fluorescence enhancement with a turn-on ratio about 96-fold was triggered. The detection limit was estimated to be âˆ¼ 40 nM. Studies on the interaction mechanism revealed that dye M-H-SO3 could bind to site III of HSA with a 1:1 binding stoichiometry. Furthermore, dye M-H-SO3 has been applied to determine HSA in real urine samples with good recoveries, which provided a useful method for HSA analysis in biological fluids.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Bovina , Albúmina Sérica Humana , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Estructura Molecular , Bovinos , Animales , Espectrometría de Fluorescencia
2.
Anal Chim Acta ; 1252: 341074, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-36935132

RESUMEN

G4 DNA structure highly localized to functionally important sites within the human genome, has been identified as a biomarker for regulation of multiple biological processes. Identification G4-responsive fluorescence probes has broad application prospects for addressing G4 biological functions, as well as developing of new families of anticancer drugs. However, some currently designed G4 DNA probes may suffer from serious solvent-dependent effect, and cause unspecific fluorescence that masks the specific signal from G4 DNA. Herein, with a bulky imidazole-cored molecular rotor fusing in D-A building block of carbazole-pyridinium, we constructed a new probe ACPS. This new probe with desirable environmentally insensitive property exhibited a "fluorescence-off" state in various polarity solvents. In the presence of G4 DNA, the intra-molecular rotations would be restricted, triggering intense fluorescence enhancement. Especially, probe ACPS bound to G4 DNA structures with superior selectivity, exhibiting much weaker fluorescence response in the presence of non-G4 DNA structures. This probe was also able to realize fluorescence visualization in cell imaging. Collectively, the probe design strategy eliminates the background fluorescence caused by uncontrollable environmental polarity change, thereby achieving high-fidelity sensing G4 DNA structures in complicated systems.


Asunto(s)
Colorantes Fluorescentes , G-Cuádruplex , Humanos , Colorantes Fluorescentes/química , Fluorescencia , ADN/química
3.
J Mater Chem B ; 10(38): 7772-7779, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36069214

RESUMEN

The c-MYC promoter is well-known as an important oncogene, the overexpression of which leads to ∼80% of all solid tumors. The four-stranded G4 present in the c-MYC promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Accordingly, strategies employed for c-MYC G4 DNA sensing have implications for the detection of many human pathologies. However, achieving specificity toward c-MYC G4 over other structurally similar G4s is a challenging task. Here, a supramolecular strategy that relies on the recognition-driven disaggregation of a novel BODIPY probe is outlined. The synthesized probe remained almost non-fluorescent in aqueous media in the aggregation state. Of all the tested G4 and non-G4 DNAs, only c-MYC triggered probe disaggregation and induced a significant increase in fluorescence intensity. The binding details discussed here suggest the basis for the recognition of a particular G4 structure, thus opening up a new way for the design and development of sequence-selective supramolecular G4 probes with desired properties.


Asunto(s)
G-Cuádruplex , Colorantes , ADN/química , Humanos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA