Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 9(6): 1023-1029, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38602167

RESUMEN

Solution-processable semiconductor heterostructures enable scalable fabrication of high performance electronic and optoelectronic devices with tunable functions via heterointerface control. In particular, artificial optical synapses require interface manipulation for nonlinear signal processing. However, the limited combinations of materials for heterostructure construction have restricted the tunability of synaptic behaviors with simple device configurations. Herein, MAPbBr3 nanocrystals were hybridized with MgAl layered double hydroxide (LDH) nanoplates through a room temperature self-assembly process. The formation of such heterostructures, which exhibited an epitaxial relationship, enabled effective hole transfer from MAPbBr3 to LDH, and greatly reduced the defect states in MAPbBr3. Importantly, the ion-conductive nature of LDH and its ability to form a charged surface layer even under low humidity conditions allowed it to attract and trap holes from MAPbBr3. This imparted tunable synaptic behaviors and short-term plasticity (STP) to long-term plasticity (LTP) transition to a two-terminal device based on the LDH-MAPbBr3 heterostructures. The further neuromorphic computing simulation under varying humidity conditions showcased their potential in learning and recognition tasks under ambient conditions. Our work presents a new type of epitaxial heterostructure comprising metal halide perovskites and layered ion-conductive materials, and provides a new way of realizing charge-trapping induced synaptic behaviors.

2.
Nanoscale ; 16(7): 3484-3491, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38269423

RESUMEN

Most metal chalcogenides exhibit layered structures and anisotropic morphologies such as nanosheets, nanoplates, and nanotubes, as well as nanosheet-assembled nanoflowers. Unconventional morphologies such as nanorings may bring appealing properties to functional materials, but they have not been realized with metal chalcogenides. Herein, we report that Sn0.2Mo0.8S2 nanorings with a mixed 1T/2H phase were synthesized by etching SnS2 cores from Sn1-xMoxS2/SnS2 lateral heterostructures. Flexible electronic sensors based on these Sn0.2Mo0.8S2 nanorings exhibited excellent temperature and strain sensing performance, with a negative temperature coefficient of resistance of -0.013 °C-1 and a minimum detectable strain of 0.09%. In addition, the dual-functional flexible electronic sensors with easy fabrication and good wearability showed great promise for tracking human activities and monitoring inapparent health-related signals.

3.
ACS Appl Mater Interfaces ; 15(50): 58623-58630, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055862

RESUMEN

Eutectic gallium-indium alloy (EGaIn) is a biocompatible liquid metal, promising for wearable electronics. Through functionalization and formation of composites, EGaIn-based materials have shown potential in multifunctional sensing devices. Here, egg-shell EGaIn/Ag/ZnO ternary composite particles were prepared through an ultrasound-assisted displacement reaction combined with room-temperature hydrolysis. The composite was further constructed as a wearable sensor capable of both pressure and proximity detection. For pressure sensing, due to the decrease in the Young's modulus of the egg-shell structure and the presence of the electrical double layers between Ag and ZnO, which enriched surface charges, the sensor showed excellent sensitivity at low pressures (2.17 KPa-1, <0.4 KPa) and thus the ability to sense body movements. For proximity sensing, the composite sensor was able to detect approaching objects that were up to 20 cm away. By combining and fitting the sensing curves for both the touchless and touching modes, the extracted parameters were used to create fingerprints for different objects, demonstrating the great potential of our sensor in the differentiation and identification of unknown objects for future robotics and artificial intelligence.

4.
Front Physiol ; 14: 1110926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37555019

RESUMEN

The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.

5.
Phys Chem Chem Phys ; 25(24): 16438-16445, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306094

RESUMEN

Although titanium-based MXenes have been widely reported for gas sensing, the effect of crystal stoichiometric variations on the sensing properties has been rarely reported. Herein, stoichiometric polymorphs of titanium carbide MXenes (i.e., Ti3C2Tx and Ti2CTx) loaded with Pd nanodots (NDs) prepared by photochemical reduction were investigated for room-temperature H2 sensing. Interestingly, we found that Pd/Ti2CTx exhibited greatly enhanced sensitivity to H2, along with faster response and recovery rates compared to Pd/Ti3C2Tx. The H2 adsorption induced resistance change in Pd/Ti2CTx was higher than that of Pd/Ti3C2Tx due to the more effective charge transfer at the heterointerface of Pd/Ti2CTx, which was confirmed by shifts of binding energies and theoretical calculation results. We hope this work could be helpful to design more high-performance MXene-based gas sensors.

6.
Genes (Basel) ; 14(3)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36981023

RESUMEN

Owing to the inherent heterogeneity and plasticity of fibroblasts, they are considered as the conventional biological resources for basic and clinical medical research. Thus, it is essential to generate knowledge about the establishment of fibroblast cultures and the effects of cryopreservation processes on their biological characteristics. Since the pig (Sus scrofa) possesses numerous genetic, physiological, and anatomical similarities with humans, porcine fibroblasts are naturally regarded as useful analogues of human fibroblasts. Nonetheless, less attention has been given to the alterations in viability and gene expression of cryopreserved porcine fibroblasts. In this study, we aimed to obtain fibroblasts from porcine ear skin and evaluate the effects of cryopreservation on the cell survival, proliferation, and gene expression profiles of the fibroblasts by trypan-blue-staining assay, Cell Counting kit-8 (CCK-8) assay, and RNA-sequencing analysis, respectively. Our results suggested that morphologically stable fibroblast cultures can be constructed from pig-ear skin. The post-thaw survival rate of the cryopreserved fibroblasts at 0 h and 24 h was over 90%. The proliferative activity of the cryopreserved fibroblasts was similar to that of the non-cryopreserved fibroblasts after 7 days of in vitro culture, which suggested that cryopreservation did not influence the viability. The RNA-sequencing analysis indicated that this should be attributed to the 867 differentially expressed genes (DGEs) identified, which are involved in molecular process related to cell recovery and survival after cryo-stimulation. In addition, eight important DEGs BMP2, GDF15, EREG, AREG, HBEGF, LIF, IL-6, and HOX-7 could potentially be applied to improve the efficiency of fibroblast cryopreservation, but comprehensive and systematic studies on understanding the underlying mechanisms responsible for their modulatory roles are urgently needed.


Asunto(s)
Criopreservación , Piel , Humanos , Porcinos , Criopreservación/métodos , Fibroblastos/metabolismo , Expresión Génica , ARN/metabolismo , Animales
7.
Vet Res Commun ; 47(3): 1185-1193, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36646865

RESUMEN

The family Cyathocotylidae trematode is a world-widely distributed parasite whose adults are mainly found in fish, reptiles, birds, and mammals in both freshwater and marine environments. However, little is known of the prevalence of these trematode in China. For the first time, we found Cyathocotylidae trematode in the Wuhu area. Therefore, we investigated the prevalence of metacercariae in Carassius auratus from Zhang Lake, Kui Lake, Qingyi River, and Yangtze River (Wuhu Section) in Wuhu area. A total of 392 one-year-old C. auratus were tested in January, April, July, and October 2019, respectively. After the fish were euthanized, the back, chest, and tail muscles were used for preliminary screening for the presence of metacercariae by direct compression method. Metacercariae were isolated by the artificial digestion method and then morphologically and molecularly identified by cox1 (642 bp) and ITS2 (418 bp) sequences amplification by PCR. Based on morphological features and sequence analysis, they were identified as cyathocotylid metacercariae. The four water sources have different degrees of prevalence throughout the year, the prevalence ranges from 28.45% (29/102) in Yangtze River to 50.55% (46/91) in Zhang Lake, with an average prevalence of 40.56% (159/392). There were also differences in the prevalence in different months: The highest occurred in July, which was 81.63% (80/98), while the lowest occurred in January, which was 8.89% (8/90). This study can provide basic data for the prevention and control of cyathocotylid trematode in this area.


Asunto(s)
Enfermedades de los Peces , Trematodos , Infecciones por Trematodos , Animales , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología , Carpa Dorada , Prevalencia , Enfermedades de los Peces/epidemiología , Trematodos/genética , Peces/parasitología , Metacercarias , China/epidemiología , Mamíferos
8.
Nat Mater ; 21(9): 1042-1049, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879439

RESUMEN

Formation of epitaxial heterostructures via post-growth self-assembly is important in the design and preparation of functional hybrid systems combining unique properties of the constituents. This is particularly attractive for the construction of metal halide perovskite heterostructures, since their conventional solution synthesis usually leads to non-uniformity in composition, crystal phase and dimensionality. Herein, we demonstrate that a series of two-dimensional and three-dimensional perovskites of different composition and crystal phase can form epitaxial heterostructures through a ligand-assisted welding process at room temperature. Using the CsPbBr3/PEA2PbBr4 heterostructure as a demonstration, in addition to the effective charge and energy transfer across the epitaxial interface, localized lattice strain was observed at the interface, which was extended to the top layer of the two-dimensional perovskite, leading to multiple new sub-bandgap emissions at low temperature. Given the versatility of our strategy, unlimited hybrid systems are anticipated, yielding composition-, interface- and/or orientation-dependent properties.

9.
Front Vet Sci ; 9: 904886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754532

RESUMEN

Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 µmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 µmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.

10.
Chem Commun (Camb) ; 58(56): 7765-7768, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35730725

RESUMEN

Lead halide perovskite nanocrystals and their heterostructures have achieved substantial advances in optoelectronics; however, their inherent material instability and lead toxicity have driven research on alternative material systems. Herein, solution-processable heterostructures composed of lead-free double perovskite Cs2AgBiBr6 nanocrystals and BiOCl nanosheets were prepared through a colloidal synthesis method. Defect states were present in BiOCl and benefited carrier generation, recombination and transport in Cs2AgBiBr6. As a result, the light emission of the Cs2AgBiBr6 nanocrystals was greatly enhanced at low temperatures, and the photodetector based on the Cs2AgBiBr6/BiOCl heterostructure exhibited a much improved on-off ratio compared to the device based on Cs2AgBiBr6 alone. Our work highlights the complex nature and impact of two-dimensional heterostructure assembly on the optoelectronic properties of lead-free double perovskites and demonstrates their great potential toward environmentally friendly optoelectronic devices.

11.
Chemistry ; 28(31): e202200298, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384089

RESUMEN

Liquid metals, which possess both good electrical conductivity and liquid-like processability, have drawn much attention recently. They are also capable of acting as synthesis templates to guide the deposition of other functional materials. Herein, through an in-situ galvanic replacement reaction assisted by ultrasonication, core-shell EGaIn/Ag particles composed of EGaIn cores and vertically aligned Ag nanoflakes as shells were prepared; they were further sulfurized to yield ternary EGaIn/Ag/Ag2 S core-shell composite particles. A humidity sensor based on EGaIn/Ag/Ag2 S particles showed much higher sensing response than EGaIn and EGaIn/Ag. Such superior performance could be attributed to the n-type semiconducting character of Ag2 S allowing it to receive electrons from water molecules at low humidity, and its highly hydrophilic surface allowing it to absorb more water molecules at higher humidity so as to enable the formation of ion-conductive paths.

12.
Clin Transl Med ; 12(1): e707, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061934

RESUMEN

Gastric cancer (GC) ranks third in mortality among all cancers worldwide. Circular RNAs (circRNAs) play an important role in the occurrence and development of gastric cancer. Forkhead box P2 (FOXP2), as a transcription factor, is closely associated with the development of many types of tumours. However, the regulatory network between FOXP2 and circRNAs remains to be explored. In our study, circST3GAL6 was significantly downregulated in GC and was associated with poor prognosis in GC patients. Overexpression of circST3GAL6 inhibited the malignant behaviours of GC cells, which was mediated by inducing apoptosis and autophagy. In addition, we demonstrated that circST3GAL6 regulated FOXP2 through the mir-300 sponge. We further found that FOXP2 inhibited MET Proto-Oncogene (MET), which was the initiating factor that regulated the classic AKT/mTOR pathway of autophagy. In conclusion, our results suggested that circST3GAL6 played a tumour suppressive role in gastric cancer through miR-300/FOXP2 axis and regulated apoptosis and autophagy through FOXP2-mediated transcriptional inhibition of the MET axis, which may become a potential target for GC therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Sialiltransferasas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Proteínas Proto-Oncogénicas c-met/efectos de los fármacos , Sialiltransferasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Neoplasias Gástricas/prevención & control , Serina-Treonina Quinasas TOR/efectos de los fármacos , beta-Galactosida alfa-2,3-Sialiltransferasa
13.
Cell Death Dis ; 12(11): 968, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671022

RESUMEN

Gastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.


Asunto(s)
Neovascularización Patológica/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Neoplasias Gástricas/irrigación sanguínea , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Desnudos , Modelos Biológicos , Estadificación de Neoplasias , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Pronóstico , Proteolisis , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cell Death Dis ; 12(10): 910, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611143

RESUMEN

Gastric cancer remains the third leading cause of cancer-related mortality worldwide. Emerging evidence has shown that circular RNAs (circRNAs) play a critical regulatory role in the occurrence and development of various cancers through sponging miRNAs or acting as RNA-binding protein (RBP) sponges. We found that circUBE2Q2 was significantly upregulated in GC tissues and cell lines. Knockdown of circUBE2Q2 inhibited proliferation, migration, invasion, and glycolysis, and increased autophagy in vitro. In addition, knockdown of circUBE2Q2 inhibited GC tumorigenicity and metastasis potential in vivo. A series of experiments were performed to confirm that circUBE2Q2 regulates GC progression via the circUBE2Q2-miR-370-3p-STAT3 axis and promotes tumor metastasis through exosomal communication. Further in vivo experiments confirmed that, combination treatment of circUBE2Q2 knocking down and STAT3 inhibitor has synergistic effects on the gastric cancer growth inhibition, which provides a possibility to enhance the sensitivity of targeted drugs to gastric cancer through targeting circUBE2Q2. Our findings revealed that circUBE2Q2 may serve as a new proliferation-promoting factor and prognostic marker in gastric cancer.


Asunto(s)
Autofagia/genética , Progresión de la Enfermedad , Glucólisis/genética , ARN Circular/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Exosomas/metabolismo , Exosomas/ultraestructura , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , ARN Circular/genética , Carga Tumoral
15.
Research (Wash D C) ; 2021: 9863038, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33982003

RESUMEN

Sensors, capable of detecting trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for environmental monitoring, food safety, health diagnostics, and national defense. In the era of the Internet of Things (IoT) and big data, the requirements on gas sensors, in addition to sensitivity and selectivity, have been increasingly placed on sensor simplicity, room temperature operation, ease for integration, and flexibility. The key to meet these requirements is the development of high-performance gas sensing materials. Two-dimensional (2D) atomic crystals, emerged after graphene, have demonstrated a number of attractive properties that are beneficial to gas sensing, such as the versatile and tunable electronic/optoelectronic properties of metal chalcogenides (MCs), the rich surface chemistry and good conductivity of MXenes, and the anisotropic structural and electronic properties of black phosphorus (BP). While most gas sensors based on 2D atomic crystals have been incorporated in the setup of a chemiresistor, field-effect transistor (FET), quartz crystal microbalance (QCM), or optical fiber, their working principles that involve gas adsorption, charge transfer, surface reaction, mass loading, and/or change of the refractive index vary from material to material. Understanding the gas-solid interaction and the subsequent signal transduction pathways is essential not only for improving the performance of existing sensing materials but also for searching new and advanced ones. In this review, we aim to provide an overview of the recent development of gas sensors based on various 2D atomic crystals from both the experimental and theoretical investigations. We will particularly focus on the sensing mechanisms and working principles of the related sensors, as well as approaches to enhance their sensing performances. Finally, we summarize the whole article and provide future perspectives for the development of gas sensors with 2D materials.

16.
J Exp Clin Cancer Res ; 40(1): 6, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33397440

RESUMEN

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/ß-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism). METHODS: Through RNA sequencing, we found that hsa_circ_0008259 (circLMO7) was highly expressed in GC tissues. After verifying the circular characteristics of circLMO7, we determined the downstream miRNA (miR-30a-3p) of circLMO7 by RNA pull-down and luciferase reporter assays. We verified the effect of circLMO7 and miR-30a-3p on GC cells through a series of functional experiments, including colony formation, 5-ethynyl-2'-deoxyuridine and Transwell assays. Through Western blot and immunofluorescence analyses, we found that WNT2 was the downstream target gene of miR-30a-3p and further confirmed that the circLMO7-miR-30a-3p-WNT2 axis could promote the development of GC. In addition, measurement of related metabolites confirmed that this axis could also provide energy for the growth of GC cells through glutamine metabolism. We found that circLMO7 could promote the growth and metastasis of GC in vivo by the establishment of nude mouse models. Finally, we also demonstrated that HNRNPL could bind to the flanking introns of the circLMO7 exons to promote circLMO7 cyclization. RESULTS: CircLMO7 acted as a miR-30a-3p sponge affecting the WNT2/ß-Catenin pathway to promote the proliferation, migration and invasion of GC cells. Moreover, animal results also showed that circLMO7 could promote GC growth and metastasis in vivo. CircLMO7 could also affect the glutamine metabolism of GC cells through the WNT2/ß-Catenin pathway to promote its malignant biological function. In addition, we proved that HNRNPL could promote the self-cyclization of circLMO7. CONCLUSIONS: CircLMO7 promotes the development of GC by releasing the inhibitory effect of miR-30a-3p on its target gene WNT2.


Asunto(s)
ARN Circular/metabolismo , Neoplasias Gástricas/genética , Proteína wnt2/metabolismo , beta Catenina/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Ratones , MicroARNs , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia
17.
J Gastroenterol ; 56(2): 125-138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33155080

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) act as vital regulators of gene expression in a variety of cancers. However, the role of circRNAs in gastric cancer (GC) remains largely unexplored. Herein, we identified that circTMEM87A sponges miR-142-5p to promote GC progression through up-regulating ULK1 expression. METHODS: The expression of circTMEM87A in GC was determined by RNA sequencing and quantitative real-time PCR (qRT-PCR). The effects of knockdown or exogenous expression of circTMEM87A on GC cell phenotypes were evaluated both in vitro and in vivo. The interacting miRNA of circTMEM87A was predicted by bioinformatics and confirmed by RNA pull-down, dual-luciferase reporter assay and fluorescence in situ hybridization (FISH). The mechanism by which circTMEM87A/miR-142-5p/ULK1 axis promotes GC was determined by western blot, GFP/mRFP-LC3 puncta analysis, transmission electron microscope (TEM). RESULTS: CircTMEM87A was dramatically elevated in GC tissues and cell lines, and high circTMEM87A expression was closely correlated with poor prognosis of GC patients. Knockdown of circTMEM87A suppressed cell growth, migration, invasion and induced apoptosis in vitro, as well as inhibited GC tumorigenicity and lung metastasis potential in vivo. Meanwhile, circTMEM87A overexpression had the opposite effects. Furthermore, we demonstrated that circTMEM87A could act as a sponge of miR-142-5p to regulate ULK1 expression and GC progression. CONCLUSIONS: Our findings suggest that circTMEM87A functions as an oncogene through the miR-142-5p/ULK1 axis in GC. CircTMEM87A might be a prognostic biomarker as well as a promising therapeutic target for GC.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , MicroARNs/efectos de los fármacos , ARN Circular/farmacología , Neoplasias Gástricas/etiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/análisis , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , MicroARNs/análisis , MicroARNs/genética , ARN Circular/uso terapéutico , Neoplasias Gástricas/fisiopatología
18.
Front Oncol ; 10: 598256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262952

RESUMEN

Circular RNAs (circRNAs) have important regulatory roles in the development of various cancers. However, the biological functions and potential molecular mechanisms of circRNAs in hepatocellular carcinoma (HCC) are still unclear. In this study, we investigated the role of a new circRNA-circGSK3B (hsa_circ_0003763) and its molecular mechanism in HCC. We found that circGSK3B was highly expressed in HCC tissues and HCC cell lines. Additionally, the expression level of circGSK3B significantly correlated with HCC tumor size and vascular invasion. Functionally, we confirmed that circGSK3B can promote the proliferation, migration, and invasion of HCC cells in vivo and in vitro. In terms of mechanism, we demonstrated that circGSK3B acts as a miR-1265 sponge, positively regulates the target gene CAB39, and promotes the reprogramming of glutamine metabolism, thereby promoting the progression of HCC. Finally, the classic RNA binding protein QKI was observed to participate in the biogenesis of circGSK3B. In summary, we proved that the circGSK3B-miR-1265-CAB39 axis can promote the proliferation, migration, invasion of HCC cells, indicating that circGSKB may serve as a promising diagnostic and prognostic marker in HCC.

19.
J Exp Clin Cancer Res ; 39(1): 246, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33198772

RESUMEN

BACKGROUND: Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. METHODS: RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). RESULTS: CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. CONCLUSIONS: CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


Asunto(s)
Cisplatino/farmacología , Proteínas de la Membrana/genética , MicroARNs/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , ARN Circular/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Transfección
20.
Scand J Gastroenterol ; 55(6): 687-693, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32449434

RESUMEN

Objectives: The PHD Finger Protein 19 (PHF19), as a sub-component of polycomb repressive complex 2 (PRC2), has been identified to be associated with various biological processes. Aberrant expression of PHF19 has implicated in several cancer types. This study aims to investigate its function and clinical significance in gastric cancer for the first time.Methods: The expression of PHF19 was evaluated by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. PHF19 was silenced by small interference RNAs and lentiviral particles in gastric cancer cells. Then cell growth was measured by CCK-8 assays, colony formation and in a mouse model. Transwell and wound healing assays were performed to detect cell migration. Western blot analysis was used to explore the downstream signaling factors in PHF19-silenced cells, xenograft tumors and gastric cancer samples.Results: PHF19 was frequently upregulated in gastric cancer tissues compared with adjacent normal stomach tissues and this upregulation was correlated with tumor cell differentiation and poor outcome of gastric cancer patients. Functionally, the silencing of PHF19 in gastric cancer cells led to decreased cell growth and migration. Stable knockdown of PHF19 inhibited the tumorigenicity of gastric cancer cells in nude mice model. Western blot results demonstrated that phosphorylated AKT and ERK were reduced upon PHF19 downregulation, implying the two signaling pathways possibly mediate the oncogenic roles of PHF19.Conclusions: We identified PHF19 as an oncogene candidate and provided a new potential drug target for gastric cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...