Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 24(6): 960-966, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962602

RESUMEN

Photosynthetic heat tolerance (PHT ) is a key predictor of plant response to climate change. Mangroves are an ecologically and economically important coastal plant community comprised of trees growing at their physiological limits. Mangroves are currently impacted by global warming, yet the PHT of mangrove trees is poorly understood. In this study, we provide the first assessment of PHT in 13 Asian mangrove species, based on the critical temperature that causes the initial damage (TCrit ) and the temperature that causes 50% damage (T50 ) to photosystem II. We tested the hypotheses that the PHT in mangroves is: (i) correlated with climatic niche and leaf traits, and (ii) higher than in plants from other tropical ecosystems. Our results demonstrated correlations between PHT and multiple key climate variables, the palisade to spongy mesophyll ratio and the leaf area. The two most heat-sensitive species were Kandelia obovata and Avicennia marina. Our study also revealed that mangrove trees show high heat tolerance compared to plants from other tropical ecosystems. The high PHT of mangroves thus demonstrated a conservative evolutionary strategy in heat tolerance, and highlights the need for integrative and comparative studies on thermoregulatory traits and climatic niche in order to understand the physiological response of mangrove trees to climate change-driven heatwaves and rising global temperatures.


Asunto(s)
Termotolerancia , Árboles , Ecosistema , Complejo de Proteína del Fotosistema II , Hojas de la Planta/fisiología , Plantas , Árboles/fisiología
2.
Plant Biol (Stuttg) ; 24(7): 1208-1223, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34990084

RESUMEN

Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long-term measurements. We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems. Apart from A. pseudoplatanus and Q. petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited to B. pendula and C. avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM ) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel. Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental and TPM data show that leaf xylem is generally no more vulnerable than stem xylem.


Asunto(s)
Embolia , Magnoliopsida , Árboles , Sequías , Xilema , Hojas de la Planta , Bosques , Agua
3.
Plant Physiol Biochem ; 149: 50-60, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32035252

RESUMEN

Chilling is one of the main abiotic stresses that adversely affect the productivity of sugarcane, in marginal tropical regions where chilling incidence occurs with seasonal changes. However, nanoparticles (NPs) have been tested as a mitigation strategy against diverse abiotic stresses. In this study, NPs such as silicon dioxide (nSiO2; 5-15 nm), zinc oxide (nZnO; <100 nm), selenium (nSe; 100 mesh), graphene (graphene nanoribbons [GNRs] alkyl functionalized; 2-15 µm × 40-250 nm) were applied as foliar sprays on sugarcane leaves to understand the amelioration effect of NPs against negative impact of chilling stress on photosynthesis and photoprotection. To this end, seedlings of moderately chilling tolerant sugarcane variety Guitang 49 was used for current study and spilt plot was used as statistical design. The changes in the level chilling tolerance after the application of NPs on Guitang 49 were compared with tolerance level of chilling tolerant variety Guitang 28. NPs treatments reduced the adverse effects of chilling by maintaining the maximum photochemical efficiency of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), and photosynthetic gas exchange. Furthermore, application of NPs increased the content of light harvesting pigments (chlorophylls and cartinoids) in NPs treated seedlings. Higher carotenoid accumulation in leaves of NPs treated seedlings enhanced the nonphotochemical quenching (NPQ) of PSII. Among the NPs, nSiO2 showed higher amelioration effects and it can be used alone or in combination with other NPs to mitigate chilling stress in sugarcane.


Asunto(s)
Frío , Nanopartículas , Saccharum , Dióxido de Silicio , Estrés Fisiológico , Clorofila/metabolismo , Nanopartículas/química , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Saccharum/efectos de los fármacos , Plantones/efectos de los fármacos , Dióxido de Silicio/farmacología , Estrés Fisiológico/efectos de los fármacos
4.
Ecology ; 97(2): 503-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27145624

RESUMEN

Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand.


Asunto(s)
Sequías , Bosques , Árboles/fisiología , Clima Tropical , Filogenia , Hojas de la Planta/fisiología , Especificidad de la Especie , Árboles/genética
5.
Lett Appl Microbiol ; 62(5): 392-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26946487

RESUMEN

UNLABELLED: In this study, we comprehensively investigated the effect of dietary protein sources on the gut microbiome of weaned piglets with diets comprising different protein source using High-throughput 16SrRNA gene-based Illumina Miseq. A total of 48 healthy weaned piglets were allocated randomly to four treatments with 12 piglets in each group. The weaned piglets were fed with diets containing soybean meal (SBM), cottonseed meal (CSM), SBM and CSM (SC) or fish meal (FM). The intestinal content samples were taken from five segments of the small intestine. DNA was extracted from the samples and the V3-V4 regions of the 16SrRNA gene were amplified. The microbiota of the contents of the small intestine were very complex, including more than 4000 operational taxonomic units belonging to 32 different phyla. Four bacterial populations (i.e. Firmicutes, Proteobacteria, Bacteroidetes and Acidobacteria) were the most abundant bacterial groups. The genera Lactobacillus and Clostridium were found in slightly higher proportions in the groups with added CSM compared to the other groups. The proportion of reads assigned to the genus Escherichia/Shigella was much higher in the FM group. In conclusion, dietary protein source had significant effects on the small microbiome of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY: Dietary protein source have the potential to affect the small intestine microbiome of weaned piglets that will have a large impact on its metabolic capabilities and intestinal health. In this study, we successfully identified the microbiomes in the contents of the small intestine in the weaned piglets that were fed different protein source diets using high-throughput sequencing. The finding provided an evidence for the option of the appropriate protein source in the actual production.


Asunto(s)
Proteínas en la Dieta/metabolismo , Contenido Digestivo/microbiología , Microbioma Gastrointestinal , Glycine max/metabolismo , Intestino Delgado/microbiología , Porcinos/microbiología , Acidobacteria/aislamiento & purificación , Animales , Bacteroidetes/aislamiento & purificación , Aceite de Semillas de Algodón/metabolismo , Dieta , Firmicutes/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Intestino Delgado/metabolismo , Proteobacteria/aislamiento & purificación , ARN Ribosómico 16S/genética
6.
Tree Physiol ; 29(2): 217-28, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19203947

RESUMEN

Diurnal and seasonal changes in gas exchange and chlorophyll fluorescence of the uppermost-canopy leaves of four evergreen dipterocarp species were measured on clear days. The trees, that were growing in a plantation stand in southern Yunnan, China, had canopy heights ranging from 17 to 22 m. In the rainy season, Dipterocarpus retusus Bl. had higher photosynthetic capacity (A(max)) than Hopea hainanensis Merr. et Chun, Parashorea chinensis Wang Hsie and Vatica xishuangbannaensis G.D. Tao et J.H. Zhang (17.7 versus 13.9, 11.8 and 7.7 micromol m(-2) s(-1), respectively). In the dry season, A(max) in all species decreased by 52-64%, apparent quantum yield and dark respiration rate decreased in three species, and light saturation point decreased in two species. During the diurnal courses, all species exhibited sustained photosynthetic depression from midmorning onward in both seasons. The trees were able to regulate light energy allocation dynamically between photochemistry and heat dissipation during the day, with reduced actual photochemistry and increased heat dissipation in the dry season. Photorespiration played an important role in photoprotection in all species in both seasons, as indicated by a continuous increase in photorespiration rate in the morning toward midday and a high proportion of electron flow (about 30-65% of total electron flow) allocated to oxygenation for most of the day. None of the species suffered irreversible photoinhibition, even in the dry season. The sustained photosynthetic depression in the uppermost-canopy leaves of these species could be a protective response to prevent excessive water loss and consequent catastrophic leaf hydraulic dysfunction.


Asunto(s)
Respiración de la Célula/fisiología , Dipterocarpaceae/metabolismo , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , China , Clorofila/metabolismo , Sequías , Fluorescencia , Fotones , Hojas de la Planta/fisiología , Lluvia , Estaciones del Año , Árboles/metabolismo , Clima Tropical , Agua/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-11970079

RESUMEN

The dual-star composition rule of doubly superstable (DSS) sequences presents a complete renormalizable algebraic structure for studying Feigenbaum's metric universality and self-similar classification of DSS sequences in symbolic dynamics of bimodal maps of the interval. Here an important feature is that the complete combinations of up- and down-star products create all the generalized Feigenbaum's routes of transitions to chaos. These routes can be classified into two types: one consists of countably infinitely many regular routes which preserve Feigenbaum's metric universality; another consists of uncountably infinitely many universal nonscaling routes described by the irregularly mixed dual-star products, which break Feigenbaum's asymptotically convergent metric universality although they are structurally universal. The combinatorial complexity of dual-star products may increase the grammatical complexity of languages of symbolic dynamics. Moreover, it is found that there exists a global regularity between the fractal dimensions d and the scaling factors [alpha(C),alpha(D)] for Feigenbaum-type attractors: d(Z)log(/Z/)/alpha(C)(Z)alpha(D)(Z)/=beta((2)), where beta((2)) is independent of the concrete DSS sequences Z.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...