Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Data ; 11(1): 692, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926434

RESUMEN

The plum fruit moth Grapholita funebrana (Tortricidae, Lepidoptera) is an important pest of many wild and cultivated stone fruits and other plants in the family Rosaceae. Here, we assembled its nuclear and mitochondrial genomes using Illumina, Nanopore, and Hi-C sequencing technologies. The nuclear genome size is 570.9 Mb, with a repeat rate of 51.28%, and a BUCSO completeness of 97.7%. The karyotype for males is 2n = 56. We identified 17,979 protein-coding genes, 5,643 tRNAs, and 94 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and 2 rRNA. These genomes provide resources to understand the genetics, ecology, and genome evolution of the tortricid moths.


Asunto(s)
Genoma de los Insectos , Genoma Mitocondrial , Mariposas Nocturnas , Animales , Femenino , Masculino , Mariposas Nocturnas/genética , Prunus domestica
2.
Sci Data ; 11(1): 582, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834623

RESUMEN

The western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) is a global invasive species that causes increasing damage by direct feeding on crops and transmission of plant viruses. Here, we assemble a previously published scaffold-level genome into a chromosomal level using Hi-C sequencing technology. The assembled genome has a size of 302.58 Mb, with a contig N50 of 1533 bp, scaffold N50 of 19.071 Mb, and BUSCO completeness of 97.8%. All contigs are anchored on 15 chromosomes. A total of 16,312 protein-coding genes are annotated in the genome with a BUSCO completeness of 95.2%. The genome contains 492 non-coding RNA, and 0.41% of interspersed repeats. In conclusion, this high-quality genome provides a convenient and high-quality resource for understanding the ecology, genetics, and evolution of thrips.


Asunto(s)
Genoma de los Insectos , Thysanoptera , Thysanoptera/genética , Animales
3.
Sci Data ; 11(1): 419, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653995

RESUMEN

Tortricidae is one of the largest families in Lepidoptera, including subfamilies of Tortricinae, Olethreutinae, and Chlidanotinae. Here, we assembled the gap-free genome for the subfamily Chlidanotinae using Illumina, Nanopore, and Hi-C sequencing from Polylopha cassiicola, a pest of camphor trees in southern China. The nuclear genome is 302.03 Mb in size, with 36.82% of repeats and 98.4% of BUCSO completeness. The karyotype is 2n = 44 for males. We identified 15412 protein-coding genes, 1052 tRNAs, and 67 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and one rRNA. These high-quality genomes provide valuable information for studying phylogeny, karyotypic evolution, and adaptive evolution of tortricid moths.


Asunto(s)
Genoma de los Insectos , Genoma Mitocondrial , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Masculino , Filogenia , China , ARN de Transferencia/genética , Cariotipo
4.
Sci Data ; 11(1): 280, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459039

RESUMEN

The flower thrips Frankliniella intonsa (Thysanoptera: Thripidae) is a common insect found in flowers of many plants. Sometimes, F. intonsa causes damage to crops through direct feeding and transmission of plant viruses. Here, we assembled a chromosomal level genome of F. intonsa using the Illumina, Oxford Nanopore (ONT), and Hi-C technologies. The assembled genome had a size of 209.09 Mb, with a contig N50 of 997 bp, scaffold N50 of 13.415 Mb, and BUSCO completeness of 92.5%. The assembled contigs were anchored on 15 chromosomes. A set of 14,109 protein-coding genes were annotated in the genome with a BUSCO completeness of 95.0%. The genome contained 491 non-coding RNA and 0.57% of interspersed repeats. This high-quality genome provides a valuable resource for understanding the ecology, genetics, and evolution of F. intonsa, as well as for controlling thrips pests.


Asunto(s)
Genoma de los Insectos , Thysanoptera , Animales , Cromosomas , Flores , Thysanoptera/genética
5.
Sci Data ; 11(1): 199, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351308

RESUMEN

The Japanese sawyer beetle Monochamus alternatus (Coleoptera: Cerambycidae) is a pest in pine forests and acts as a vector for the pine wood nematode Bursaphelenchus xylophilus, which causes the pine wilt disease. We assembled a high-quality genome of M. alternatus at the chromosomal level using Illumina, Nanopore, and Hi-C sequencing technologies. The assembled genome is 767.12 Mb, with a scaffold N50 of 82.0 Mb. All contigs were assembled into ten pseudo-chromosomes. The genome contains 63.95% repeat sequences. We identify 16, 284 protein-coding genes in the genome, of which 11,244 were functionally annotated. The high-quality genome of M. alternatus provides an invaluable resource for the biological, ecological, and genetic study of this beetle and opens new avenues for understanding the transmission of pine wood nematode by insect vectors.


Asunto(s)
Escarabajos , Genoma de los Insectos , Pinus , Animales , Escarabajos/genética , Bosques , Insectos Vectores , Japón
6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401527

RESUMEN

Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.


Asunto(s)
Adaptación Fisiológica , Inversión Cromosómica , Animales , Adaptación Fisiológica/genética , Clima , Temperatura , Insectos
7.
Sci Data ; 10(1): 848, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040744

RESUMEN

The fruit fly Zeugodacus tau (Diptera: Tephritidae) is a major pest of melons and other cucurbits in Southeast Asia. In this study, we used Illumina, Nanopore, and Hi-C sequencing technologies to assemble a reference genome of Z. tau at the chromosomal level. The assembled genome was 421.79 Mb and consisted of six chromosomes (one X-chromosome + five autosomes). The contig N50 was 4.23 Mb. We identified 20,922 protein-coding genes, of which 17,251 (82.45%) were functionally annotated. Additionally, we found 247 rRNAs, 435 tRNAs, 67 small nuclear RNAs, and 829 small RNAs in the genome. Repetitive elements accounted for 55.30 Mb (13.15%) of the genome. This high-quality genome assembly is valuable for evolutionary and genetic studies of Z. tau and its relative species.


Asunto(s)
Genoma de los Insectos , Tephritidae , Animales , Cromosomas , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Tephritidae/genética
8.
Pest Manag Sci ; 79(11): 4282-4289, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37345405

RESUMEN

BACKGROUND: Several agricultural fungicides are known to affect insect pests directly and these effects may be transgenerational and mediated through impacts on endosymbionts, providing opportunities for pest control. The cotton aphid Aphis gossypii is a polyphagous pest that can cause large crop yield losses. Here, we tested the effects of three fungicides, pyraclostrobin, trifloxystrobin and chlorothalonil, on the fitness and Buchnera endosymbiont of A. gossypii. RESULTS: The formulations of trifloxystrobin and pyraclostrobin, and the active ingredient of pyraclostrobin produced dose-dependent mortality in A. gossypii, whereas there was no dose-dependent mortality for chlorothalonil. The formulations of trifloxystrobin and pyraclostrobin significantly reduced the lifespan and fecundity of A. gossypii, and increased the density of Buchnera in the parental generation but not the (unexposed) F1 . When the active ingredient of pyraclostrobin was tested, the lifespan of the F0 generation was also reduced, but the density of Buchnera was not, indicating that non-insecticidal chemicals in the fungicide formulation may affect the density of the endosymbiont of A. gossypii. There was no transgenerational effect of the active ingredient of pyraclostrobin on the lifespan and Buchnera of (unexposed) F1 . CONCLUSIONS: Our results suggest that formulations of two strobilurin fungicides have immediate impacts on the fitness of A. gossypii, and chemicals in the formulation impact the density of the primary Buchnera endosymbiont. Our study highlights the potential effects of non-insecticidal chemicals of fungicides on aphid pests and their primary endosymbionts but direct connections between fitness and Buchnera densities remain unclear. © 2023 Society of Chemical Industry.

9.
Mol Ecol ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277936

RESUMEN

Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.

10.
Am J Cancer Res ; 13(4): 1533-1546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168345

RESUMEN

Prostate cancer is one of the most lethal malignancies, and androgen deprivation therapy remains the mainstay of treatment for prostate cancer patients. Although androgen deprivation can initially come to remission, the disease often develops into castration-resistant prostate cancer (CRPC), which is still dependent on androgen receptor (AR) signaling and is related to a poor prognosis. Some success against CRPC has been achieved by drugs that target AR signaling, but secondary resistance uninterrupted emerges, and new therapies are urgently needed. In this study, we identified a potent small molecule compound, ZY-444, that suppressed PCa cells proliferation and metastasis, and inhibited tumor growth both in subcutaneous. Transcriptome sequencing analysis showed that TNFAIP3 was significantly elevated in prostate cancer cells after ZY-444 treatment. Further studies through overexpression of TNFAIP3 confirmed that TNFAIP3, as a direct target gene of ZY-444, contributes to the functions of ZY-444. In addition, we demonstrated the effects of TNFAIP3 on prostate cancer cell apoptosis, migration and proliferation to elucidate the mechanism of ZY-444. We found that TNFAIP3 inhibited the TNF signaling pathway, which could inhibit cell migration and proliferation and contribute to apoptosis. Overall, these findings highlighted TNFAIP3 as a tumor suppressor gene in the regulation of the progression and metastatic potential of prostate cancer and that targeting TNFAIP3 by ZY-444 might be a promising strategy for prostate cancer treatment.

11.
Pest Manag Sci ; 79(9): 3218-3226, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37042232

RESUMEN

BACKGROUND: Field control of pest thrips mainly relies on insecticides, but the toxicity of insecticides can vary among thrips species and populations. In this study, we examined the susceptibility of multiple field populations of two thrips pests, Frankliniella occidentalis, and Thrips palmi, that often co-occur on vegetables, to nine insecticides belonging to seven subgroups. RESULTS: The highest level of variation in susceptibility among F. occidentalis populations was for spinetoram (73.92 fold difference between most resistant and most susceptible population), followed by three neonicotinoids (8.06-15.99 fold), while among T. palmi populations, it was also for spinetoram (257.19 fold), followed by emamectin benzoate, sulfoxaflor, and acetamiprid (23.64-45.50 fold). These findings suggest evolved resistance to these insecticides in some populations of the two thrips. One population of F. occidentalis had a particularly high level of resistance overall, being the most resistant for five of the nine insecticides tested. Likewise, a population of T. palmi had high resistance to all nine insecticides, again suggesting the evolution of resistance to multiple chemicals. For F. occidentalis, the LC95 values of most populations were higher than the field-recommended dosage for all insecticides except chlorfenapyr and emamectin benzoate. For several T. palmi populations, the LC95 values also tended to be higher than recommended dosages, except in the case of emamectin benzoate and spinetoram. CONCLUSIONS: Our study found interspecific and intraspecific variations in the susceptibility of two thrips to nine insecticides and multiple resistance in some populations, highlighting the need for ongoing monitoring and resistance management. © 2023 Society of Chemical Industry.


Asunto(s)
Insecticidas , Thysanoptera , Animales , Insecticidas/farmacología , Macrólidos
12.
Pest Manag Sci ; 79(5): 1702-1712, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36594581

RESUMEN

BACKGROUND: The two-spotted spider mite (TSSM), Tetranychus urticae (Acari: Tetranychidae), is a cosmopolitan phytophagous pest in agriculture and horticulture. It has developed resistance to many acaricides by target-site mutations. Understanding the status and evolution of resistant mutations in the field is essential for resistance management. Here, we applied a high-throughput Kompetitive allele-specific polymerase chain reaction (KASP) method for detecting six mutations conferring resistance to four acaricides of the TSSM. We genotyped 3274 female adults of TSSM from 43 populations collected across China in 2017, 2020, and 2021. RESULTS: The KASP genotyping of 24 testing individuals showed 99% agreement with Sanger sequencing results. KASP assays showed that most populations had a high frequency of mutations conferring avermectin (G314D and G326E) and pyridaben (H92R) resistance. The frequency of mutation conferring bifenazate (A269V and G126S) and etoxazole (I1017F) resistance was relatively low. Multiple mutations were common in the TSSM, with 70.2% and 24.6% of individuals having 2-6 and 7-10 of 10 possible resistant alleles, respectively. No loci were linked in most populations among the six mutations, indicating the development of multiple resistance is mainly by independent selection. However, G314D and I1017F on the nuclear genome deviated from Hardy-Weinberg equilibrium in most populations, indicating significant selective pressure on TSSM populations by acaricides or fitness cost of the mutations in the absence of acaricide selection. CONCLUSION: Our study revealed that the high frequency of TSSMs evolved multiple resistant mutations in population and individual levels by independent selection across China, alarming for managing multiple-acaricides resistance. © 2023 Society of Chemical Industry.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Femenino , Acaricidas/farmacología , Tetranychidae/genética , Alelos , Mutación , China
13.
Pest Manag Sci ; 79(5): 1777-1782, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36627758

RESUMEN

BACKGROUND: Pesticide resistance is a long-standing and growing problem in the chemical control of invertebrate pests. Molecular diagnostic methods can facilitate pesticide resistance management by accurately and efficiently detecting resistant mutations and their frequency. In this study, the kompetitive allele specific PCR (KASP) approach, a technology for high-throughput single nucleotide polymorphism (SNP) genotyping, is validated as a useful method for characterizing genotypes at a pesticide-resistance locus for the first time. We focus on the spinetoram resistance mutation of G275E in the nicotinic acetylcholine receptor alpha 6 (nAChR α6) subunit gene of Thrips palmi. RESULTS: Of the 341 individuals of Thrips palmi tested, 98.24% were successfully genotyped, with 100% concordance with Sanger sequencing results. We then quantitatively mixed genomic DNA of known genotypes to establish 21 DNA mixtures with a resistant allele frequency ranging from 0 to 100% at steps of 5%. The linear discriminant analysis (LDA) showed that 75.8% of original grouped cases were correctly classified; six groups had no overlap in membership (resistant allele frequency: 0%, 5%, 10-75%, 80-85%, 90-95%, and 100%). When we chose 11 pooled samples with 10% steps for LDA, 84.4% of original grouped cases were correctly classified; seven groups had no overlap in membership (0%, 10%, 20-30%, 40-70%, 80%, 90%, 100%). The results indicated that KASP applied to pooled samples may provide a semi-quantitative estimate of resistance. CONCLUSIONS: Our study points to the suitability of KASP for high-throughput genotyping of genotypes affecting pesticide resistance and semi-quantitative assessments of resistance allele frequencies in populations. © 2023 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Thysanoptera , Animales , Humanos , Alelos , Genotipo , Thysanoptera/genética , Mutación , Reacción en Cadena de la Polimerasa
14.
Am Nat ; 201(1): 65-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524932

RESUMEN

AbstractThe movement of individuals through continuous space is typically constrained by dispersal ability and dispersal barriers. A range of approaches have been developed to investigate these. Kindisperse is a new approach that infers recent intergenerational dispersal (σ) from close kin dyads and appears particularly useful for investigating taxa that are difficult to observe individually. This study, focusing on the mosquito Aedes aegypti, shows how the same close kin data can also be used for barrier detection. We empirically demonstrate this new extension of the method using genome-wide sequence data from 266 Ae. aegypti. First, we use the spatial distribution of full-sib dyads collected within one generation to infer past movements of ovipositing female mosquitoes. These dyads indicated the relative barrier strengths of two roads and performed favorably against alternative genetic methods for detecting barriers. We then use Kindisperse to quantify recent intergenerational dispersal (σ=81.5-197.1 m generation-1/2) from the difference in variance between the sib and the first cousin spatial distributions and, from this, estimate effective population density (ρ=833-4,864 km-2). Dispersal estimates showed general agreement with those from mark-release-recapture studies. Barriers, σ, ρ, and neighborhood size (331-526) can inform forthcoming releases of dengue-suppressing Wolbachia bacteria into this mosquito population.


Asunto(s)
Aedes , Wolbachia , Humanos , Animales , Femenino , Aedes/genética , Densidad de Población
15.
Pest Manag Sci ; 79(2): 569-583, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36205305

RESUMEN

BACKGROUND: The diamondback moth (DBM) Plutella xylostella has developed resistance to almost all insecticides used to control it. Populations of DBM in temperate regions mainly migrate from annual breeding areas. However, the distribution pattern of insecticide resistance of DBM within the context of long-distance migration remains unclear. RESULTS: In this study, we examined the frequency of 14 resistance mutations for 52 populations of DBM collected in 2010, 2011, 2017 and 2018 across China using a high-throughput KASP genotyping method. Mutations L1041F and T929I conferring pyrethroid resistance, and mutations G4946E and E1338D conferring chlorantraniliprole resistance were near fixation in most populations, whereas resistant alleles of F1020S, M918I, A309V and F1845Y were uncommon or absent in most populations. Resistance allele frequencies were relatively stable among different years, although the frequency of two mutations decreased. Principal component analysis based on resistant allele frequencies separated a southern population as an outlier, whereas the immigrants clustered with other populations, congruent with the migration pattern of northern immigrants coming from the Sichuan area of southwestern China. Most resistant mutations deviated from Hardy-Weinberg equilibrium due to a lower than expected frequency of heterozygotes. The deviation index of heterozygosity for resistant alleles was significantly higher than the index obtained from single nucleotide polymorphisms across the genome. These findings suggest heterogeneous selection pressures on resistant mutations. CONCLUSION: Our results provide a picture of resistant mutation patterns in DBM shaped by insecticide usage and migration of this pest, and highlight the widespread distribution of resistance alleles in DBM. © 2022 Society of Chemical Industry.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mutación , China
16.
World J Gastrointest Surg ; 15(12): 2938-2944, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38222021

RESUMEN

BACKGROUND: Klebsiella variicola (K. variicola) is a member of the Klebsiella genus and is often misidentified as Klebsiella pneumoniae. In this report, we present a rare case of invasive liver abscess caused by K. variicola. CASE SUMMARY: We report a rare case of liver abscess due to K. variicola. A 57-year-old female patient presented with back pain for a month. She developed a high-grade fever associated with chills, and went into a coma and developed shock. The clinical examinations and tests after admission confirmed a diagnosis of primary liver abscess caused by K. variicola complicated by intracranial infection and septic shock. The patient successfully recovered following early percutaneous drainage of the abscess, prompt appropriate antibiotic administration, and timely open surgical drainage. CONCLUSION: This is a case of successful treatment of invasive liver abscess syndrome caused by K. variicola, which has rarely been reported. The findings of this report point to the need for further study of this disease.

17.
Pest Manag Sci ; 78(12): 5090-5096, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36102347

RESUMEN

BACKGROUND: Thrips pests cause increasing damage to crops around the world. Widespread usage of some insecticides against thrips has now led to the evolution of resistance to several active ingredients, and new insecticides are required. This study examined the toxicity of the novel insecticide broflanilide to multiple populations of several thrips pests. RESULTS: Bioassays showed that thrips populations had LC50 values ranging from 0.5 to almost 300 mg·L-1 . A population of Frankliniella occidentalis had the highest LC50 value at 290.63 mg·L-1 , while a population of Echinothrips americanus had the lowest LC50 value at 0.51 mg L-1 . LC50 values among seven populations of Thrips palmi ranged from 2.5689 to 23.6754 mg·L-1 , indicating intraspecific variation in toxicity. In this species, the toxicity of broflanilide was relatively higher in adults than in larvae. More than 90% of eggs of T. palmi could not develop into larvae when treated with 5-50 mg L-1 broflanilide. Compared to five commonly used insecticides, broflanilide showed relatively high toxicity to T. palmi. Field control tests with T. palmi showed that control efficacy (from 90.44% to 93.14%) was maintained from day three to day 14 after treatment with 22.5 and 45 ga.i hm-1 broflanilide. CONCLUSION: Broflanilide is potentially a useful insecticide for controlling Thrips hawaiiensis, Frankliniella intonsa, Megalurothrips usitatus. E. americanus, and some populations of T. palmi. However, the variation in toxicity of this insecticide to different species, populations, and developmental stages indicates that target species and life stages may need to be carefully considered. © 2022 Society of Chemical Industry.


Asunto(s)
Insecticidas , Thysanoptera , Animales , Diamida , Benzamidas , Larva
18.
Insects ; 13(4)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35447773

RESUMEN

The western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is an important invasive pest worldwide. Field-evolved resistance to the pesticide spinetoram is an increasing problem in the chemical control of this pest. Here, we examined changes in the frequency of a genetic mutation associated with spinetoram resistance, the G275E mutation in the acetylcholine receptor Foα6, in 62 field populations collected from 2009 to 2021 across areas of China invaded by this pest. We found a low frequency of the G275E mutation in populations collected at the early invasion stage, in contrast to a high frequency in native USA populations. However, the frequency of the G275E mutation has increased to a high level in recently collected populations, with the mutation becoming fixed in some populations. There was a correlation between the frequency of the G275E mutation and resistance to spinetoram as characterized by median lethal concentration, although two populations were outliers. These results showed that G275E mutation is one of the mechanisms conferring spinetoram resistance in many invading populations in China. Ongoing dispersal of the WFT may have facilitated a rapid increase in the G275E mutation across China. Our study highlights the rapid evolution of pesticide resistance in an invasive species and points to a useful marker for molecular diagnostics of spinetoram resistance.

19.
Insects ; 13(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35447783

RESUMEN

Organosilicone molecules represent important components of surfactants added to pesticides to improve pest control efficiency, but these molecules also have pesticidal properties in their own right. Here, we examined toxicity and control efficacy of Silwet 408, a trisiloxane ethoxylate-based surfactant, to the two-spotted spider mite (TSSM), Tetranychus urticae and its crop hosts. Silwet 408 was toxic to nymphs and adults of TSSM but did not affect eggs. Field trials showed that the control efficacy of 1000 mg/L Silwet 408 aqueous solution reached 96% one day after spraying but declined to 54% 14 days after spraying, comparable to 100 mg/L cyetpyrafen, a novel acaricide. A second spraying of 1000 mg/L Silwet 408 maintained control efficacy at 97% when measured 14 days after spraying. However, Silwet 408 was phytotoxic to eggplant, kidney bean, cucumber, and strawberry plants, although phytotoxicity to strawberry plants was relatively low and declined further seven days after application. Our study showed that while the organosilicone surfactant Silwet 408 could be used to control the TSSM, its phytotoxicity to crops should be considered.

20.
Ecol Evol ; 12(4): e8806, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35414902

RESUMEN

Increasing damage of pests in agriculture and forestry can arise both as a consequence of changes in local species and through the introduction of alien species. In this study, we used population genetics approaches to examine population processes of two pests of the tree-of-heaven trunk weevil (TTW), Eucryptorrhynchus brandti (Harold) and the tree-of-heaven root weevil (TRW), E. scrobiculatus (Motschulsky) on the tree-of-heaven across their native range of China. We analyzed the population genetics of the two weevils based on ten highly polymorphic microsatellite markers. Population genetic diversity analysis showed strong population differentiation among populations of each species, with F ST ranges from 0.0197 to 0.6650 and from -0.0724 to 0.6845, respectively. Populations from the same geographic areas can be divided into different genetic clusters, and the same genetic cluster contained populations from different geographic populations, pointing to dispersal of the weevils possibly being human-mediated. Redundancy analysis showed that the independent effects of environment and geography could account for 93.94% and 29.70% of the explained genetic variance in TTW, and 41.90% and 55.73% of the explained genetic variance in TRW, respectively, indicating possible impacts of local climates on population genetic differentiation. Our study helps to uncover population genetic processes of these local pest species with relevance to control methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...