Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Food Res Int ; 189: 114564, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876596

RESUMEN

Total volatile basic nitrogen (TVB-N) serves as a crucial indicator for evaluating the freshness of salmon. This study aimed to achieve accurate and non-destructive prediction of TVB-N content in salmon fillets stored in multiple temperature settings (-20, 0, -4, 20 °C, and dynamic temperature) using near-infrared (NIR) and Raman spectroscopy. A partial least square support vector machine (LSSVM) regression model was established through the integration of NIR and Raman spectral data using low-level data fusion (LLDF) and mid-level data fusion (MLDF) strategies. Notably, compared to a single spectrum analysis, the LLDF approach provided the most accurate prediction model, achieving an R2P of 0.910 and an RMSEP of 1.922 mg/100 g. Furthermore, MLDF models based on 2D-COS and VIP achieved R2P values of 0.885 and 0.906, respectively. These findings demonstrated the effectiveness of the proposed method for precise quantitative detection of salmon TVB-N, laying a technical foundation for the exploration of similar approaches in the study of other meat products. This approach has the potential to assess and monitor the freshness of seafood, ensuring consumer safety and enhancing product quality.


Asunto(s)
Nitrógeno , Salmón , Alimentos Marinos , Espectroscopía Infrarroja Corta , Espectrometría Raman , Máquina de Vectores de Soporte , Animales , Espectrometría Raman/métodos , Espectroscopía Infrarroja Corta/métodos , Alimentos Marinos/análisis , Nitrógeno/análisis , Temperatura , Análisis de los Mínimos Cuadrados
2.
J Immunol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847616

RESUMEN

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.

3.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719408

RESUMEN

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Aprendizaje Automático , Nanopartículas del Metal , Plata , Espectrometría Raman , Aptámeros de Nucleótidos/química , Plata/química , Oro/química , Nanopartículas del Metal/química , Cloranfenicol/análisis , Estradiol/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Límite de Detección
4.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615776

RESUMEN

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Asunto(s)
Carbono , Inocuidad de los Alimentos , Nanoestructuras , Alimentos Marinos , Alimentos Marinos/análisis , Inocuidad de los Alimentos/métodos , Nanoestructuras/análisis , Carbono/análisis , Contaminación de Alimentos/análisis
5.
Lipids Health Dis ; 23(1): 97, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566047

RESUMEN

BACKGROUND: Observational studies have suggested an association between birth weight and type 2 diabetes mellitus, but the causality between them has not been established. We aimed to obtain the causal relationship between birth weight with T2DM and quantify the mediating effects of potential modifiable risk factors. METHODS: Two-step, two-sample Mendelian randomization (MR) techniques were applied using SNPs as genetic instruments for exposure and mediators. Summary data from genome-wide association studies (GWAS) for birth weight, T2DM, and a series of fatty acids traits and their ratios were leveraged. The inverse variance weighted (IVW) method was the main analysis approach. In addition, the heterogeneity test, horizontal pleiotropy test, Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test, and leave-one-out analysis were carried out to assess the robustness. RESULTS: The IVW method showed that lower birth weight raised the risk of T2DM (ß: -1.113, 95% CI: -1.573 ∼ -0.652). Two-step MR identified 4 of 17 candidate mediators partially mediating the effect of lower birth weight on T2DM, including ratio of polyunsaturated fatty acids to monounsaturated fatty acids (proportion mediated: 7.9%), ratio of polyunsaturated fatty acids to total fatty acids (7.2%), ratio of omega-6 fatty acids to total fatty acids (8.1%) and ratio of linoleic acid to total fatty acids ratio (6.0%). CONCLUSIONS: Our findings supported a potentially causal effect of birth weight against T2DM with considerable mediation by modifiable risk factors. Interventions that target these factors have the potential to reduce the burden of T2DM attributable to low birth weight.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos , Humanos , Diabetes Mellitus Tipo 2/genética , Peso al Nacer/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Ácidos Grasos Monoinsaturados
6.
World J Hepatol ; 16(3): 439-451, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577529

RESUMEN

BACKGROUND: Sterol O-acyltransferase 1 (SOAT1) is an important target in the diagnosis and treatment of liver cancer. However, the prognostic value of SOAT1 in patients with hepatocellular carcinoma (HCC) is still not clear. AIM: To investigate the correlation of SOAT1 expression with HCC, using RNA-seq and gene expression data of The Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) and pan-cancer. METHODS: The correlation between SOAT1 expression and HCC was analyzed. Cox hazard regression models were conducted to investigate the prognostic value of SOAT1 in HCC. Overall survival and disease-specific survival were explored based on TCGA-LIHC data. Biological processes and functional pathways mediated by SOAT1 were characterized by gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. In addition, the protein-protein interaction network and co-expression analyses of SOAT1 in HCC were performed to better understand the regulatory mechanisms of SOAT1 in this malignancy. RESULTS: SOAT1 and SOAT2 were highly expressed in unpaired samples, while only SOAT1 was highly expressed in paired samples. The area under the receiver operating characteristic curve of SOAT1 expression in tumor samples from LIHC patients compared with para-carcinoma tissues was 0.748, while the area under the curve of SOAT1 expression in tumor samples from LIHC patients compared with GTEx was 0.676. Patients with higher SOAT1 expression had lower survival rates. Results from GO/KEGG and gene set enrichment analyses suggested that the PI3K/AKT signaling pathway, the IL-18 signaling pathway, the calcium signaling pathway, secreted factors, the Wnt signaling pathway, the Jak/STAT signaling pathway, the MAPK family signaling pathway, and cell-cell communication were involved in such association. SOAT1 expression was positively associated with the abundance of macrophages, Th2 cells, T helper cells, CD56bright natural killer cells, and Th1 cells, and negatively linked to the abundance of Th17 cells, dendritic cells, and cytotoxic cells. CONCLUSION: Our findings demonstrate that SOAT1 may serve as a novel target for HCC treatment, which is helpful for the development of new strategies for immunotherapy and metabolic therapy.

7.
BMC Med ; 22(1): 101, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448943

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD) shares common pathophysiological mechanisms with type 2 diabetes, making them significant risk factors for type 2 diabetes. The present study aimed to assess the epidemiological feature of type 2 diabetes in patients with NAFLD or MAFLD at global levels. METHODS: Published studies were searched for terms that included type 2 diabetes, and NAFLD or MAFLD using PubMed, EMBASE, MEDLINE, and Web of Science databases from their inception to December 2022. The pooled global and regional prevalence and incidence density of type 2 diabetes in patients with NAFLD or MAFLD were evaluated using random-effects meta-analysis. Potential sources of heterogeneity were investigated using stratified meta-analysis and meta-regression. RESULTS: A total of 395 studies (6,878,568 participants with NAFLD; 1,172,637 participants with MAFLD) from 40 countries or areas were included in the meta-analysis. The pooled prevalence of type 2 diabetes among NAFLD or MAFLD patients was 28.3% (95% confidence interval 25.2-31.6%) and 26.2% (23.9-28.6%) globally. The incidence density of type 2 diabetes in NAFLD or MAFLD patients was 24.6 per 1000-person year (20.7 to 29.2) and 26.9 per 1000-person year (7.3 to 44.4), respectively. CONCLUSIONS: The present study describes the global prevalence and incidence of type 2 diabetes in patients with NAFLD or MAFLD. The study findings serve as a valuable resource to assess the global clinical and economic impact of type 2 diabetes in patients with NAFLD or MAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Bases de Datos Factuales , Pacientes
8.
Diabetes Metab J ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503277

RESUMEN

Background: The incidence density of metabolic dysfunction-associated fatty liver disease (MAFLD) and the effect of a healthy lifestyle on the risk of MAFLD remain unknown. We evaluated the prevalence and incidence density of MAFLD and investigated the association between healthy lifestyle and the risk of MAFLD. Methods: A cross-sectional analysis was conducted on 37,422 participants to explore the prevalence of MAFLD. A cohort analysis of 18,964 individuals was conducted to identify the incidence of MAFLD, as well as the association between healthy lifestyle and MAFLD. Cox proportional hazards regression was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) with adjustments for confounding factors. Results: The prevalence of MAFLD, non-alcoholic fatty liver disease, and their comorbidities were 30.38%, 28.09%, and 26.13%, respectively. After approximately 70 thousand person-years of follow-up, the incidence densities of the three conditions were 61.03, 55.49, and 51.64 per 1,000 person-years, respectively. Adherence to an overall healthy lifestyle was associated with a 19% decreased risk of MAFLD (HR, 0.81; 95% CI, 0.72 to 0.92), and the effects were modified by baseline age, sex, and body mass index (BMI). Subgroup analyses revealed that younger participants, men, and those with a lower BMI experienced more significant beneficial effects from healthy lifestyle. Conclusion: Our results highlight the beneficial effect of adherence to a healthy lifestyle on the prevention of MAFLD. Health management for improving dietary intake, physical activity, and smoking and drinking habits are critical to improving MAFLD.

9.
Food Chem ; 447: 138902, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38458132

RESUMEN

The timely detection of freshness changes of aquatic products is crucial. In this study, we have developed a reliable, cost-effective, and user-friendly method for rapidly detecting hypoxanthine using a xanthine oxidase (XOD)/nanozyme enzymatic cascade system. The nanozyme, derived from the Fe7/Ni3 metal-organic framework (Fe7Ni3MOF), exhibited good peroxidase-mimetic activity and stability. Our proposed XOD/Fe7Ni3MOF enzymatic cascade system demonstrated a linear response to hypoxanthine in the range of 3-70 µM, with a low detection limit of 1.39 µM. We also analyzed hypoxanthine in actual aquatic products, achieving spiked recoveries ranging from 90.04 % to 107.37 %. The correlation coefficient between our developed colorimetric method and the HPLC method was 0.98. Importantly, our proposed method holds several advantages over alternative techniques, particularly in terms of cost-effectiveness, precision, and speed. Consequently, this methodology shows great promise for the early detection of freshness changes in aquatic samples.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Hipoxantina , Técnicas Biosensibles/métodos , Colorimetría/métodos , Peróxido de Hidrógeno
10.
Artículo en Inglés | MEDLINE | ID: mdl-38357943

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes. METHODS: The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect. RESULTS: We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells. CONCLUSION: Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.

11.
Nat Commun ; 15(1): 624, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245507

RESUMEN

In situ monitoring of endogenous amino acid loss through sweat can provide physiological insights into health and metabolism. However, existing amino acid biosensors are unable to quantitatively assess metabolic status during exercise and are rarely used to establish blood-sweat correlations because they only detect a single concentration indicator and disregard sweat rate. Here, we present a wearable multimodal biochip integrated with advanced electrochemical electrodes and multipurpose microfluidic channels that enables simultaneous quantification of multiple sweat indicators, including phenylalanine and chloride, as well as sweat rate. This combined measurement approach reveals a negative correlation between sweat phenylalanine levels and sweat rates among individuals, which further enables identification of individuals at high metabolic risk. By tracking phenylalanine fluctuations induced by protein intake during exercise and normalizing the concentration indicator by sweat rates to reduce interindividual variability, we demonstrate a reliable method to correlate and analyze sweat-blood phenylalanine levels for personal health monitoring.


Asunto(s)
Técnicas Biosensibles , Sudor , Humanos , Sudor/química , Fenilalanina/metabolismo , Sudoración , Técnicas Biosensibles/métodos , Aminoácidos/metabolismo
12.
Compr Rev Food Sci Food Saf ; 23(1): e13301, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284587

RESUMEN

In recent years, the food industry has shown a growing interest in the development of rapid and nondestructive analytical methods. However, the utilization of a solitary nondestructive detection technique offers only a constrained extent of physical or chemical insights regarding the sample under examination. To overcome this limitation, the amalgamation of spectroscopy with data fusion strategies has emerged as a promising approach. This comprehensive review delves into the fundamental principles and merits of low-level, mid-level, and high-level data fusion strategies within the domain of food analysis. Various data fusion techniques encompassing spectra-to-spectra, spectra-to-machine vision, spectra-to-electronic nose, and spectra-to-nuclear magnetic resonance are summarized. Moreover, this review also provides an overview of the latest applications of spectral data fusion techniques (SDFTs) for classification, adulteration, quality evaluation, and contaminant detection within the purview of food safety analysis. It also addresses current challenges and future prospects associated with SDFTs in real-world applications. Despite the extant technical intricacy, the ongoing evolution of online data fusion platforms and the emergence of smartphone-based multi-sensor fusion detection technology augur well for the pragmatic realization of SDFTs, endowing them with formidable capabilities for both qualitative and quantitative analysis in the realm of food analysis.


Asunto(s)
Análisis de los Alimentos , Industria de Alimentos , Análisis Espectral/métodos , Análisis de los Alimentos/métodos
13.
Acta Pharmacol Sin ; 45(3): 619-632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37848553

RESUMEN

N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 µM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Movimiento Celular , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Línea Celular Tumoral , Proteínas Co-Represoras/farmacología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
14.
Front Nutr ; 10: 1207732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899842

RESUMEN

Arsenic (As) species analysis is important for the risk evaluation of seafood. Until now, there has been limited information on the change of As species during digestion. Here, the As species in different types of seafood before and after in vitro digestion were investigated. Although inorganic As was not detected in digested fish samples, As(V) contents in digested crabs and scallops were 17.12 ± 1.76 and 138.69 ± 7.53, respectively, which were approximately 2-3 times greater than those of the pre-digestion samples. In further experiments, arsenocholine, dimethylarsinate, arsenobetaine, and monomethylarsonate were all convertible to As(V) during in vitro digestions with different rates. The transformation demonstrates a complex process and could be affected by many factors, such as pH, time, and digestion juice composition, of which pH seemed to be particularly important. Free radicals were responsible for the oxidation in the transformation reactions. Unlike arsenobetaine, arsenocholine seemed to be able to directly transform to monomethylarsonate without the intermediate dimethylarsinate. This study reveals and validates the potential of other species (oAs or/and unknown species) to convert to iAs, identifies the main factors affecting this process, and proposes a reaction pathway. There is an important implication for promoting a more accurate risk assessment of arsenic in foodstuffs.

15.
Langmuir ; 39(41): 14586-14594, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792480

RESUMEN

The biopanning of target-specific phages is one of the most critical steps in the preparation of single-domain antibodies. In the traditional biopanning of haptens, the nonspecific binding of library phages to macromolecular proteins is one of the most challenging problems in preparing single-domain antibodies. In this research, Fe3O4@ENR-functionalized core-shell magnetic nanoparticles (FMNPs) were silylated and aminated by tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane, and target enrofloxacin was coupled onto the surface by the carbodiimide method. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, particle size distribution, zeta potential, transmission electron microscopy observation, and indirect enzyme-linked immunosorbent assay (ELISA). A biopanning strategy based on Fe3O4@ENR FMNPs was then established to solve the problem in the traditional solid-phase biopanning process. The results showed that a considerable number of enrofloxacin (ENR)-positive phages were screened by only one round of biopanning. Finally, two ENR-specific shark-derived single-domain genes were identified and validated by monoclonal phage ELISA, gene sequencing, and biolayer interferometry technology. Our study provides a new biopanning strategy based on Fe3O4@ENR FMNPs for efficiently providing phages specific to haptens.


Asunto(s)
Nanopartículas de Magnetita , Anticuerpos de Dominio Único , Enrofloxacina , Nanopartículas de Magnetita/química , Bioprospección , Haptenos
16.
Food Res Int ; 173(Pt 1): 113358, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803660

RESUMEN

An unrecorded wild mushroom Lactarius hatsudake from Nanyue mountainous region in China was identified. Subsequently, comparative investigation on the nutritional value, elemental bioaccumulation, and antioxidant activity was performed in the fruiting body (FB) and mycelium (MY) samples of this species. It revealed that the contents of moisture (87.66 ± 0.16 g/100 g fw) and ash (6.97 ± 0.16 g/100 g dw) were significantly higher in FB, and the total carbohydrate, fat, and protein concentrations of FB were similar to those in MY. Among nutritionally important elements, FB possessed higher concentrations of potassium (37808.61 ± 1237.38 mg/kg dw), iron (470.69 ± 85.54 mg/kg dw), and zinc (136.13 ± 5.16 mg/kg dw), whereas MY was a better source of magnesium (1481.76 ± 18.03 mg/kg dw), calcium (2203.87 ± 69.61 mg/kg dw), and sodium (277.44 ± 22.93 mg/kg dw). According to the health risk estimation, FB might pose an aluminum-related health problem when a prolonged period of exposure, while MY was risk-free for consumers. The results of antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays) in FB and MY were within the range of 104.19 ± 5.70 mg ascorbic acid equivalents (AAE)/g to 169.50 ± 4.94 mg AAE/g, and half maximal effective concentration EC50 values ranged from 0.23 ± 0.01 mg/mL to 0.62 ± 0.05 mg/mL. The aqueous extracts of MY demonstrated a strong ABTS radical scavenging capacity with the highest AAE value.


Asunto(s)
Antioxidantes , Ascomicetos , Antioxidantes/análisis , Bioacumulación , Ácido Ascórbico , Cuerpos Fructíferos de los Hongos/química , Micelio , Valor Nutritivo
17.
Diabetes Metab Syndr ; 17(10): 102873, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37804689

RESUMEN

AIMS: Non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) are important risk factors of chronic kidney disease (CKD). Whether adherence to a healthy lifestyle can modify these effects remain unknown. This study aimed to evaluate the modification effects of healthy lifestyle on the associations among NAFLD, MAFLD, and the risk of CKD, with taking into the effect of genetic risk. METHODS: The Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study (TCLSIH), the UK Biobank Study (UKB). The outcome was incident CKD. The exposures including NAFLD, MAFLD, healthy lifestyle, and a genetic risk score (GRS) for CKD. RESULTS: After 1,135,334 person-year follow-up, we documented 2975 incident CKD cases in the two cohorts. MAFLD and NAFLD were associated with a higher risk of CKD, particularly in patients with MAFLD. In the TCLSIH and UKB, the hazard ratios (95% confidence intervals) of incident CKD for MAFLD were 1.47 (1.30, 1.66) and 1.73 (1.57, 1.91), respectively. Adherence to a healthier lifestyle decreased the risk of CKD from MAFLD with significant interaction effects (TCLSIH: Pinteraction = 0.02; UKB: Pinteraction = 0.04). Participants with a lower CKD-GRS experienced a higher risk of CKD from MAFLD, but achieved two healthy lifestyles can significantly decreased the risk of CKD in patients with MAFLD. CONCLUSIONS: MAFLD and NAFLD are associated with a higher CKD risk, particularly MAFLD. Adherence to a healthier lifestyle was associated with a lower risk of CKD from MAFLD. These results highlight the important role of following a healthy lifestyle to prevent CKD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Estudios de Cohortes , Estudios Prospectivos , Estilo de Vida Saludable , Inflamación , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/prevención & control
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123211, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531680

RESUMEN

In recent years, the rapid detection of chloramphenicol (CAP) has become a market demand due to its high toxicity. In this study, for the first time, a portable surface-enhanced Raman scattering (SERS) aptasensor for the rapid and on-site detection of chloramphenicol (CAP) residues in fish was developed. Fe3O4@Au nanoflowers combined with sulfhydryl (SH)-CAP aptamer complementary DNA acted as capture probes. SH-CAP aptamer modified Au@Ag nanoparticles (Au@Ag NPs) embedded with 4-mercaptobenzoic acid (4-MBA) were served as reporter probes. The strongest Raman intensity was produced due to the coupling of Fe3O4@Au nanoflowers (Fe3O4@Au NFs) and Au@Ag NPs. For CAP detection, a wide linear range from 0.001 to 1000 µg/L, with an R2 of 0.9805, was obtained. The limit of detection was determined to be 0.87 ng/L. The SERS aptasensor showed excellent performance for analytical applications for real fish samples. Compared with the conventional HPLC method, the developed SERS aptasensor coupled with a handheld Raman spectrometer had flexible application and avoided the limitations of complex operating conditions. It should be a promising portable analytical tool for analysis of drug residues in the field.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas del Metal , Animales , Nanopartículas del Metal/química , Oro/química , Plata/química , Oligonucleótidos , Espectrometría Raman/métodos , Fenómenos Magnéticos , Límite de Detección , Aptámeros de Nucleótidos/química
19.
Heliyon ; 9(6): e16821, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332970

RESUMEN

There is now increasing demand to improve the sensitivity of various immunoassays for fluoroquinolones (FQs) and other food hazards. In this study, different coating antigens were prepared by adjusting the content of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) to explore its influence on the immunoassay sensitivity of FQs. The results indicated that, unlike traditional assumptions, a reasonable EDC dosage should be addressed to reach the best analytical efficiency, and excessive EDC could enhance the hapten-carrier conjugation but significantly reduce the detection sensitivity. For the FQs investigated, the hapten:EDC:BSA proportion of 20:2.5:50 (Mole ratio:74:34:1) seemed the best for preparation of coating antigens, and the sensitivity could be improved more than 1000 times both for indirect competitive enzyme linked immunosorbent assay ELISA (ic-ELISA) and gold immunochromatography assay (GICA) due to two key factors including coupling-ratios and amide bond groups. Such an improved efficiency was also validated well with different food samples, which indicated the reasonable optimization of EDC in coating antigen synthesis may be widely used as a new, simple and more effective strategy to improve the immunoassay for low molecular targets in medical, environment and food detection filed.

20.
Front Immunol ; 14: 1144020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342337

RESUMEN

For a long time, people have suffered from uncertainty, complexity, and a low success rate in generating and screening antibodies against small molecules, which have become the core bottlenecks of immunochemistry. Here, the influence of antigen preparation on antibody generation was investigated at both molecular and submolecular levels. Neoepitopes (amide-containing neoepitopes) formed in the preparation of complete antigens are one of the most important factors limiting the efficiency of generating hapten-specific antibodies, which was verified by different haptens, carrier proteins, and conjugation conditions. Amide-containing neoepitopes present electron-dense structural components on the surface of prepared complete antigens and, therefore, induce the generation of the corresponding antibody with much higher efficiency than target hapten. Crosslinkers should be carefully selected and not overdosed. According to these results, some misconceptions in the conventional anti-hapten antibody production were clarified and corrected. By controlling the content of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) during the synthesis of immunogen to limit the formation of amide-containing neoepitopes, the efficiency of hapten-specific antibody generation could be significantly improved, which verified the correctness of the conclusion and provided an efficient strategy for antibody preparation. The result of the work is of scientific significance in the preparation of high-quality antibodies against small molecules.


Asunto(s)
Amidas , Anticuerpos , Humanos , Haptenos , Antígenos , Proteínas Portadoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...