Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Chemosphere ; 354: 141718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490607

RESUMEN

Metalimnetic oxygen minimum (MOM) occurs in reservoirs or lakes due to stratification and algal blooms, which has low dissolved oxygen (DO) levels and leads to the deterioration of water quality. The transformation mechanism and the impact on the water quality of intracellular organic matter (IOM) derived from algae are poorly understood under MOM conditions. In this study, IOM extracted by Microcystis aeruginosa was divided into five components according to molecular weight (MW), and the changes of characteristics and correlated disinfection by-products formation potential (DBPFP) were analyzed and compared under MOM conditions. The removal efficiency of dissolved organic carbon (DOC) in the <5 kDa fraction (66.6%) was higher than that in the >100 kDa fraction (41.8%) after a 14-day incubation under MOM conditions. The same tendency also occurred in Fmax and DBPFP. The decrease in Fmax was mainly due to the decline in tryptophan-like and tyrosine-like for all IOM fractions. The diversity of microorganisms degrading the MW > 100 kDa fraction was lower than others. Besides low MW fractions, these findings indicated that more attention should be paid to high MW fractions which were resistant to biodegradation under MOM conditions during water treatment.


Asunto(s)
Microcystis , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Oxígeno , Peso Molecular , Halogenación , Contaminantes Químicos del Agua/análisis
2.
Water Res ; 253: 121323, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377927

RESUMEN

Aggregation is the primary step prior to fungal biofilm development. Understanding the attributes of aggregation is of great significance to better control the emergence of waterborne fungi. In this study, the aggregation of Aspergills spores (A. flavus and A. fumigatus) under various salt, culture medium, and humic acid (HA) conditions was investigated for the first time, and the inactivation via low-pressure ultraviolet (LPUV) upon aggregated Aspergillus spores was also presented. The aggregation efficiency and size of aggregates increased over time and at low salt (NaCl and CaCl2) concentration (10 mM) while decreasing with the continuous increase of salt concentration (100 and 200 mM). Increasing the concentration of culture medium and HA promoted the aggregation of fungal spores. Spores became hydrated, swelled, and secreted more viscous substances during the growth period, which accelerated the aggregation process. Results also suggested that fungal spores aggregated more easily in actual water, posing a high risk of biohazard in real-life scenarios. Inactivation efficiency by LPUV decreased with higher aggregation degrees due to the protection from the damaged spores on the outer layer and the shielding of pigments in the cell wall. Compared to chlorine-based disinfection, the aggregation resulted in the extension of shoulder length yet neglectable change of inactivation rate constant under LPUV treatment. Further investigation of cell membrane integrity and intracellular reactive oxygen species was conducted to elucidate the difference in mechanisms between various techniques. This study provides insight into the understanding and controlling of the aggregation of fungal spores.


Asunto(s)
Desinfección , Purificación del Agua , Desinfección/métodos , Cloro/farmacología , Aspergillus , Esporas Fúngicas , Agua , Rayos Ultravioleta
3.
Chemosphere ; 349: 140929, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092169

RESUMEN

Fungi outbreaks in water will include a series of processes, including spore aggregation, germination, biofilm, and finally present in a mixed state in the aquatic environment. More attention is paid to the control of dispersed fungal spores, however, there was little knowledge of the control of germinated spores. This study investigated the inactivation kinetics and mechanism of ultraviolet (UV) treatment for fungal spores with different germination percentages compared with dormant spores. The results indicated that the inactivation rate constants (k) of spores with 5%-45% germination were 0.0278-0.0299 cm2/mJ for Aspergillus niger and 0.0588-0.0647 cm2/mJ for Penicillium polonicum, which were lower than those of dormant spores. It suggested that germinated spores were more tolerant to UV irradiation than dormant spores, and it may be due to the defensive barrier (upregulated pigments) and some reductive substance (upregulated enoyl reductase) by absorbing UV or reacting with reactive oxygen species according to transcriptome analysis. Compared to dormant spores, the k-UV of germinated spores decreased by 18.17%-26.56% for Aspergillus niger, which was less than k-chlorine (62.33%-69.74%). A slighter decrease in k-UV showed UV irradiation can efficiently control fungi contamination, especially when dormant spores and germinated spores coexisted in actual water systems. This study indicates that more attention should be paid to germinated spores.


Asunto(s)
Cloro , Rayos Ultravioleta , Cloro/farmacología , Esporas Fúngicas , Agua , Aspergillus niger , Esporas Bacterianas
4.
J Hazard Mater ; 445: 130591, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055995

RESUMEN

The metalimnetic oxygen minimum (MOM) is a common anaerobic phenomenon that occur between 5.00 and 40.00 m of reservoirs. Amino acids (AAs) are widely found in water, but their change in MOM remain unclear. In this study, four AAs with different side chain groups were selected to explore the change of their samples and related disinfection by-products formation potential (DBPFPs) under MOM condition. The results showed that the final degradation rate of dissolved organic carbon and dissolved organic nitrogen of four AAs samples were 11.71%-59.87% and 26.50%-100.00% under MOM condition. Aspartic acid samples were the easiest to be degraded, whereas glycine samples were the opposite. While the total fluorescence intensity increased by 6.30%-113.40% for the appearance of tryptophan-like substance. The total DBPFPs of glutamic acid, arginine and aspartic acid samples were finally decreased by 4.73%, 8.00% and 98.88% (glycine sample increased by 2.30 times). Compared with the surface condition, the degradation of AAs samples and the change of DBPFPs were significantly inhibited under MOM condition. In addition, the diversities of bacterial communities were significantly reduced under MOM condition, which was very unfavorable to the degradation of AAs samples, and in turn affected the control of DBPs and deteriorated the water quality.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aminoácidos , Ácido Aspártico , Oxígeno , Desinfección , Glicina , Contaminantes Químicos del Agua/química
5.
Sci Total Environ ; 860: 160540, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574553

RESUMEN

Metalimnetic oxygen minima has been reported in many lakes and reservoirs, but the double metalimnetic oxygen minima (DMOM) is so far poorly understood. In this work, we first reported DMOM in the Sanhekou Reservoir, and investigated its formation reason and influence on the bacterial community composition (BCC). The results showed that the two anaerobic layers were formed in DMOM, located at 10 m and 45 m approximately. The rapid water storage process and thermal stratification resulted in the double metalimnions. Algal accumulation, decomposition and oxygen consumption in these regions during the sedimentation process eventually leaded to the formation of DMOM. Water temperature and DO gradients made outstanding contributions to the spatiotemporal environmental heterogeneity and significantly affected the BCC. Depending on the distribution of dissolved oxygen (DO), the storage process could be divided into three periods: DMOM, single MOM period and mixed period. Exiguobacterium and Ralstonia were dominated in DMOM due to the soil discharge and plant decomposition. Besides, BCC presented the largest vertical difference in DMOM and existed the interlayer-similar phenomenon (BCC in the two anaerobic layers were more similar). This study explained the formation of DMOM and its influence on BCC, which was helpful to understand the response of BCC to the storage process and unique DO structure in a moderate eutrophication reservoir.


Asunto(s)
Agua Potable , Oxígeno/análisis , Calidad del Agua , Bacterias , Temperatura , Eutrofización , China
6.
Sci Total Environ ; 860: 160536, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574558

RESUMEN

Recently, the contamination of fungi in water has aroused widespread concern, which will pose a threat to water quality and safety, and raise diseases risk in the immunocompromised individuals. In this review, the characteristics and different physiological state of fungi in water are summarized. A comprehensive evaluation of the control efficiency and mechanism of waterborne fungi by the commonly used disinfection methods is provided as well. During the disinfection processes of chlorine, chlorine dioxide, chloramine and advanced disinfection processes (ADPs) such as O3-based ADPs and UV-based ADPs, the fungal spores firstly lost their culturability, followed by membrane integrity, and the intracellular reactive oxygen species level increased at the same time, eventually the fungal spores were completely inactivated. The security strategies of drinking water against the contamination of fungi are also discussed in terms of water sources, water treatment plants and pipe network. Finally, future researches need to be explored are proposed: the rapid detection methods, the production laws and control of mycotoxin, and the outbreak conditions of fungi in water. Specifically, exploring efficient, safe and economical technologies, especially ADPs, is still the main direction in the disinfection of fungi in future studies. This review can offer a comprehensive understanding on the occurrence and control of fungi in water to fill the knowledge gap and provide guidance for the future research.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Humanos , Hongos , Desinfección , Esporas Fúngicas , Cloro
7.
Water Res ; 226: 119216, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257160

RESUMEN

Most of the reservoirs or lakes will form a metalimnetic oxygen minimum (MOM) with the characterization of a substantial fraction of dissolved oxygen (DO) depleted below the epilimnion. The effect of intracellular organic matter (IOM) of algal cells transformed under MOM conditions is completely different from that of the original IOM on water quality. In this study, the IOM changes of Microcystic aeruginosa under different MOM conditions and its related disinfection by-products formation potentials (DBPFPs) were investigated by changing the pressure and DO concentration of MOM. Total Fmax increased slightly and then decreased under different pressure conditions, finally decreasing by no more than 22.0%. Under aerobic condition, dissolved organic carbon (DOC) and total Fmax decreased significantly, and decreased by 60.4% and 38.8% within the first 2 days. The results of specific UV absorbance (SUVA) and UV250/UV365 indicated that aromatic compounds and average molecular weight of IOM were gradually increased under different MOM conditions. The total DBPFPs increased firstly and then decreased under different pressure conditions, and finally decreased by 26.2%-33.1%. The decrease of total DBPFPs was significantly higher under aerobic condition than that under anoxic condition, which finally decreased by 64.5%. Redundancy analysis showed that the fluorescence parameter (protein-like and humic-like fluorescence) could be expected as an index to predict the DBPFPs. Moreover, the results revealed that with the decrease of DO, the activity and diversity of natural microbial consortium decreased, which prevented the further degradation and utilization of organic matter by natural microbial consortium. Therefore, lower DO was a key player for the deterioration of water quality under MOM conditions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Oxígeno/análisis , Compuestos Orgánicos , Calidad del Agua , Contaminantes Químicos del Agua/análisis
8.
Water Res ; 223: 119039, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084430

RESUMEN

Melanin is a critical component of fungal cell wall which protect fungi from adverse environmental tress. However, the role of melanin for fungi during the disinfection with chlorine-based disinfectants has not been elucidated. The results showed that the inactivation rate constants of Aspergillus niger with chlorine and chlorine dioxide decreased from 0.08 to 2.10 min-1 to 0 after addition of 0.32 mg/L melanin. The results indicated addition of extracted fungal melanin inhibited the inactivation efficiency of chlorine and chlorine dioxide. In contrast, the k of Aspergillus niger after inactivation with monochloramine ranged from 1.50 to 1.78 min-1 after addition of melanin which indicated effect of melanin on the inactivation efficiency of monochloramine was negligible. In addition, the extracted fungal melanin exhibited high reactivity with chlorine and chlorine dioxide but very low reactivity with monochloramine. The different inactivation mechanisms of chlorine-based disinfectants and different reactivity of melanin with chlorine-based disinfectants led to the different protective mechanism of melanin for A. niger and A. flavus spores against disinfection with chlorine-based disinfectants. The chlorine and chlorine dioxide appeared to react with functional groups of melanin in cell wall of spores, so sacrificial reactions between melanin and disinfectants decreased the available disinfectants and limited the diffusion of disinfectants to the reactive site on cell membrane, which led to the decrease of the disinfection efficiency for chlorine and chlorine dioxide. The monochloramine could penetrate into cell and damage DNA without the effect of melanin due to its strong penetration and low reactivity with melanin. Our results systematically demonstrate the protective roles of melanin on the fungal spores against chlorine-based disinfectants and the underlying mechanisms in resisting the environmental stress caused by chlorine-based disinfectants, which provides important implications for the control of fungi, especially for fungi producing melanin.


Asunto(s)
Cloro , Desinfectantes , Aspergillus , Aspergillus flavus , Aspergillus niger , Cloraminas , Cloruros , Cloro/farmacología , Compuestos de Cloro , ADN , Desinfectantes/farmacología , Desinfección/métodos , Melaninas , Óxidos
9.
J Hazard Mater ; 439: 129611, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863220

RESUMEN

The disinfection of pathogenic microorganisms in water treatment by peracetic acid (PAA)-based advanced oxidation processes (AOPs) has been gaining increasing concern. In this work, the inactivation mechanism, influencing factors and regrowth of two pathogenic Aspergillus species in the system of CuO-activated PAA were studied for the first time. The k values of A. niger and A. flavus inactivated by PAA/CuO system were 3.9 and 2.1-fold higher than those inactivated by PAA alone. PAA concentration and CuO dose were positively correlated with the inactivation efficiency, while humic acid and pH were negatively correlated. The main active species that contributed to the inactivation of fungal spores in PAA/CuO system were •OH, CH3C(O)OO• and 1O2. PAA/CuO system had more intense oxidative stimulation and more serious damage to fungal spores according to the analysis of cell membrane integrity and intracellular ROS levels. In addition, the PAA/CuO system was less impacted by the water matrix and kept a good inactivation efficiency in real water samples. The regrowth potential of fungal spores after disinfection was also reduced in PAA/CuO system so as to avoid the risk of biological regrowth. This study provides a feasible PAA-based advanced oxidation method for activating PAA and inactivating fungal spores.


Asunto(s)
Ácido Peracético , Purificación del Agua , Cobre , Desinfección/métodos , Cinética , Ácido Peracético/farmacología , Esporas Fúngicas
10.
J Hazard Mater ; 430: 128515, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739689

RESUMEN

Peracetic acid (PAA) can effectively inactivate fungi in water, while may pose a potential risk of regrowth after disinfection. The inactivation kinetic and mechanism of fungal spores by combined UV and PAA (UV/PAA) was investigated in this study. The results showed that synergistic factor of the inactivation of A. niger and A. flavus was 1.44 and 1.37, which indicated significant synergistic effect of UV/PAA. The k of A. niger and A. flavus was similar at pH 5.0 and 7.0, while decreased 60.00% and 39.13% at pH 9.0 compared with that at pH 7.0. The effect of HA concentration on the inactivation efficiency of fungal spores by UV/PAA was negative, while the effect of PAA concentration was positive. The membrane permeabilized cell of A. niger and A. flavus caused by UV/PAA was 17.0% and 31.7%, which was higher than that caused by PAA and UV alone. The changes of morphology of fungal spores and the leakage of intracellular material indicated that the damage of cell structure caused by UV/PAA system was more serious than that of UV or PAA alone. In addition, the four parts that contributed in UV/PAA system was in the following order: UV > radical > PAA > synergistic effect. The inactivation efficiency of combined UV and chlorine (UV/Cl2) was higher than that of UV/PAA. Furthermore, the typical order of the inactivation efficiency in different matrix was: phosphate buffer solution > surface water > secondary effluent. The regrowth potential of fungal spores after UV/PAA treatment was significantly lower than that by PAA alone, indicating that UV/PAA could decrease the microbial regrowth potential after PAA disinfection alone.


Asunto(s)
Ácido Peracético , Purificación del Agua , Desinfección/métodos , Esporas Fúngicas , Rayos Ultravioleta , Agua , Purificación del Agua/métodos
11.
Front Neurol ; 13: 880583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756917

RESUMEN

REM sleep behavior disorder (RBD) is closely associated with Parkinson's disease (PD), however, the influence of dopaminergic replacement therapy (DRT) on the clinical course of RBD in PD remains less understood. The objective of our study is to investigate how DRTs modify the evolution of RBD in a longitudinal cohort study of initially de novo PD patients. Four hundred and five drug-naive patients with early-stage PD were included. RBD symptoms were assessed using the 10-item RBD Screening Questionnaire (RBDSQ) at baseline and during the 5-year follow-up. A generalized estimating equation was used to examine predictors of the evolution of RBD symptoms. For patients without baseline pRBD, patients on levodopa treatment showed a greater increase in RBDSQ scores than those not on levodopa treatment, and the increase in RBDSQ scores was significantly correlated with the levodopa-LEDD. Moreover, the changes in RBDSQ scores at a given post-baseline visit were significantly associated with the use of levodopa (OR = 1.875, p = 0.008) and the combined use of levodopa and DA (OR = 2.188, p = 0.012), as well as the levodopa-LEDD (OR = 1.001, p = 0.005) at that visit. The use of DA alone or the DA-LEDD was not a significant predictor of changes in RBDSQ scores. Similarly, a conversion from pRBD negative to pRBD positive was significantly associated with levodopa-LEDD (OR = 1.001, p = 0.014) but not DA-LEDD. Together, these finding implicated that the use of levodopa may act as a contributing factor to the increasing prevalence of RBD after the onset of PD, suggesting different mechanisms underlying prodromal RBD and late-onset RBD.

12.
J Environ Sci (China) ; 117: 105-118, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725063

RESUMEN

Ultraviolet (UV)/monochloramine (NH2Cl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NH2Cl process, ii) compared with UV/Cl2 in inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NH2Cl showed better inactivation efficiency than that of UV alone and UV/Cl2, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NH2Cl (2.0 mg/L) was 0.034, 0.030 and 0.061 cm2/mJ, respectively, which were higher than that of UV alone (0.027, 0.026 and 0.024 cm2/mJ) and UV/Cl2 (0.023, 0.026 and 0.031 cm2/mJ). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets (hydrophobins) and pigments. After UV/NH2Cl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NH2Cl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.


Asunto(s)
Cloro , Purificación del Agua , Aspergillus , Cloraminas , Rayos Ultravioleta , Purificación del Agua/métodos
13.
J Hazard Mater ; 435: 128924, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483263

RESUMEN

Recently, the viabilities changes of fungal spores in the water supply system during different disinfection processes have been revealed. SYBR Green I (SG), a nucleic acid stain, its fluorescence intensity is correlated with the amount of double-stranded DNA. This study established a new method through successive SG-SG-PI staining (PI: Propidium Iodide) with flow cytometry (FCM). It could successfully distinguish DNA damage and membrane damage of fungal spores, clearly elucidating the intrinsic disinfection mechanism during the chemical disinfection. This method was briefly described as follows: firstly, (1) the fungal spores were stained with SG and washed by centrifugation; and then, (2) the washed spores were treated with disinfectants and terminated; after that, (3) the disinfected spores were re-stained with SG and analyzed by FCM; finally, (4) the SG re-stained spores were stained with PI and analyzed by FCM. The percentages of spores with DNA damage and membrane damage were determined by the fluorescence intensity obtained from steps (3) and (4), respectively. The repeatability and applicability of this developed method were confirmed. It was further applied to explore the inactivation mechanism during chlorine-based disinfection, and results demonstrated that chloramine attacked the DNA more seriously than the membrane, while chlorine and chlorine dioxide worked in a reverse way.


Asunto(s)
Desinfectantes , Desinfección , Cloro , ADN , Desinfectantes/farmacología , Citometría de Flujo/métodos , Esporas Fúngicas
14.
Eur Radiol ; 32(7): 4374-4383, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35226154

RESUMEN

OBJECTIVES: To investigate the long-term effects of intensive LDL cholesterol-lowering treatments on lumen stenosis severity, plaque calcification, spotty calcifications, percent calcified plaque volume (PCPV), and Agatston coronary artery calcium score (CACS) based on coronary computed tomography angiography (CCTA) in elderly patients. METHODS: A total of 240 patients over 60 years old (comprising 754 lesions) who underwent serial CCTA were retrospectively enrolled in this 5-year cohort study. Patients were divided into three groups: an intensive lipid-lowering group, a lipid-lowering group, and a control group. The stenosis severity, plaque volume (PV), plaque composition, PCPV, and high-risk plaque (HRP) presence were quantitatively analyzed. The CACS was calculated at baseline and follow-up. RESULTS: All patients were male with an average age of 66.8 ± 5.8 years old. Over time, increases in the percentages of obstructive coronary lesions (p < 0.001) were observed. Compared with those at baseline, the percentage of obstructive lesions remained unchanged (p = 0.077), and the percentage of spotty calcifications significantly decreased (p < 0.05) at the follow-up CCTA scan in the intensive lipid-lowering group. Patients in the intensive lipid-lowering group demonstrated a higher progression in calcified PV, CACS, and PCPV (all p < 0.05), and a significantly greater attenuation in fibrous-fatty and lipid-rich PV (all p < 0.05) than patients in other groups. CONCLUSIONS: The PV and contents increased gradually with time in all groups. Intensive LDL-C lowering was associated with slower progression of stenosis severity and reduction of high-risk plaque features, with increased plaque calcification and higher progression in PCPV. Comprehensive serial plaque evaluations by CCTAs may contribute to further refinement of risk stratification and reasonable lipid-lowering treatment in elderly patients. KEY POINTS: • Intensive LDL-C lowering increased coronary calcification and percent calcified plaque volume progression. • Comprehensive serial plaque evaluations by serial CCTAs may help to refine risk stratification.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Anciano , Colesterol , LDL-Colesterol , Estudios de Cohortes , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios , Progresión de la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Valor Predictivo de las Pruebas , Estudios Retrospectivos
15.
J Hazard Mater ; 423(Pt A): 127102, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34482083

RESUMEN

In this work, sequential applications of light-emitting diodes (UV-LEDs) with two wavelengths and chlorine (Cl2) were performed for fungal spores disinfection: UV-Cl2, Cl2-UV, UV/Cl2-UV, UV-UV/Cl2, Cl2-UV/Cl2-Cl2. Overall comparisons of the sequential processes with respect to the inhibitory effect on photoreactivation were also evaluated. According to the evaluation of culturability and membrane permeability, inactivation of fungal spores by UV was not enhanced by prior or post exposure to Cl2, but in the UV/Cl2 process with pre or post UV treatment, the inactivation efficiency was greatly enhanced. Take P. polonicum for example, pre-treatments by UV265 and UV280 (40 mJ/cm2) caused the log count reduction (LCR) of 1.05 log and 0.95 log, then the followed UV265/Cl2 and UV280/Cl2 at the same UV fluence caused additional LCR of 1.80 log and 2.00 log. The permeabilization of P. polonicum was also accelerated in the processes of UV/Cl2-UV and UV-UV/Cl2, especially at the wavelength of 280 nm. In the sequential processes, especially those containing UV/Cl2 or at the wavelength of 280 nm, could promote the formation of intracellular reactive oxygen species (ROS), thus leading to more severe damage to the spores as reflected in the culturability reduction, membrane permeability and inhibition of photoreactivation.


Asunto(s)
Cloro , Purificación del Agua , Desinfección , Esporas Fúngicas , Rayos Ultravioleta
16.
Sci Total Environ ; 803: 150107, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525763

RESUMEN

The contamination of fungi in water supply systems poses great risks to environment and human health. In this work, UV light-emitting diodes (UV-LEDs)-based advanced disinfection processes (ADPs) including UV-LEDs/hydrogen peroxide (H2O2), UV-LEDs/persulfate (PS) and UV-LEDs/peroxymonosulfate (PMS), were adopted for waterborne fungal spores inactivation. Overall comparisons of the UV-LEDs-based ADPs with respect to the control efficiency of photoreactivation and energy consumption were also evaluated. Results showed that culturability reduction of the fungal spores treated by UV-LEDs was not enhanced with the addition H2O2, PMS, and PS according to the results of heterotrophic plate counts and reaction rate constants; A. niger was expected to have higher UV resistance followed by T. harzianum and P. polonicum. However, UV-LEDs-ADPs inactivation, especially at the wavelengths of 280 and 265/280 nm, could accelerate the permeabilization of fungal spores as characterized by flow cytometry. Take P. polonicum for example, the percentage of membrane permeabilized spores was 98.0%, 98.7%, 97.6% and 82.6% after treatment by UV280/H2O2, UV280/PS, UV280/PMS and UV280 alone, respectively at the fluence of 100 mJ/cm2. The direct attack of free radicals in the processes of UV-LEDs-ADPs further enhanced the membrane damage and lowered the photoreactivation level, thus improved the inactivation efficiency. UV-LEDs/H2O2 was considered as an effective process in the disinfection of fungal spores with the advantages of enhancing the damage of membrane, inhibiting photoreactivation and comparable energy consumption compared with UV-LEDs alone.


Asunto(s)
Desinfección , Purificación del Agua , Humanos , Peróxido de Hidrógeno , Cinética , Esporas Fúngicas , Rayos Ultravioleta
17.
J Environ Sci (China) ; 109: 148-160, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607663

RESUMEN

Filamentous fungi can enter drinking water supply systems in various ways, and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections. In this study, the biofilms formation kinetics of the three genera of fungal spores, Aspergillus niger (A. niger), Penicillium polonicum (P. polonicum) and Trichoderma harzianum (T. harzianum) isolated from the groundwater were reported, as well as the effects of water quality parameters were evaluated. In addition, the efficiency of low- concentrations of chlorine-based disinfectants (chlorine, chlorine dioxide and chloramine) on controlling the formation of fungal biofilms was assessed. The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases: induction, exponential, stationary and sloughing off. The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28 °C with rich nutrition. In fact, A. niger, P. polonicum, and T. harzianum were not observed to form mature biofilms in actual groundwater within 120 hr. Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater, followed by nitrogen and phosphorus. The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order: A. niger > T. harzianum > P. polonicum. Chlorine dioxide was observed to control the biofilms formation with maximum efficiency, followed by chlorine and chloramine. Consequently, the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms.


Asunto(s)
Desinfectantes , Agua Subterránea , Penicillium , Purificación del Agua , Biopelículas , Cloro , Hongos , Humanos , Hypocreales , Cinética
18.
Huan Jing Ke Xue ; 42(10): 4789-4797, 2021 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-34581121

RESUMEN

Peroxymonosulfate(PMS)-based advanced oxidation processes were widely used for the degradation of organic pollutants. Electron-rich azo dye Acid Orange 7(AO7) was selected as the target organic matter in this work. The differences, influencing factors, efficiency, and mechanisms of a PMS/Co2+ homogeneous system in the degradation of organic pollutants with two different buffers of boric acid(Lewis acid) and phosphoric acid(Bronstede acid) were investigated. The k value of AO7 degradation in the PMS/Co2+ homogeneous system with phosphate buffer was greater than that with borate buffer, but the degradation percentage during the first 10 seconds of the reaction was lower in the former case. These differences were affected by buffer concentration, the PMS and Co2+ dosages, and pH. In the phosphate buffer, ·OH or SO4-· contributed to organic degradation in the PMS/Co2+ system, while in the borate buffer, the nonradical pathway(1O2) made a critical contribution to the removal of organics. This study provides a reference for the application of different types of buffers in the homogeneous catalysis of PMS.


Asunto(s)
Boratos , Contaminantes Ambientales , Catálisis , Oxidación-Reducción , Peróxidos , Fosfatos
19.
Cardiol Res Pract ; 2021: 6647987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484819

RESUMEN

BACKGROUND: The relationship between high-sensitivity cardiac troponin T (hs-cTnT) and different cardiovascular events has been observed in several large community studies, and the results have been controversial. However, there is currently no cross-sectional or longitudinal follow-up study on hs-cTnT in the Chinese population. METHODS: We analyzed the association of plasma hs-cTnT levels with major adverse cardiovascular events (MACEs) and all-cause mortality in 1325 subjects from a longitudinal follow-up community-based population in Beijing, China. RESULTS: In the Cox proportional hazards models analysis, the risk of MACEs increased with the increase of hs-cTnT levels (HR, 1.223, 95% CI, 1.054-1.418, P=0.008). Increased hs-cTnT levels were associated with coronary events (HR, 1.391, 95% CI, 1.106-1.749, P=0.005) in Model 4. Cox proportional risk regression model analysis revealed that increased hs-cTnT levels were associated with an increased risk of mortality (HR, 1.763, 95% CI, 1.224-2.540, P=0.002), even after adjusting hs-CRP and NT-proBNP. The area under the ROC curve for predicting MACEs was 0.559 (95% CI, 0.523-0.595, P=0.001). The areas under the ROC curve for predicting coronary events and mortality were 0.629 (95% CI, 0.580-0.678, P < 0.001) and 0.644 (95% CI, 0.564-0.725, P < 0.001), respectively. CONCLUSIONS: Our findings in the Chinese cohort support that hs-cTnT is a risk factor for major adverse cardiovascular events and all-cause mortality.

20.
Water Res ; 204: 117629, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509870

RESUMEN

The formation of fungal biofilm goes through some different states, including monodisperse state, aggregated state, germinated state, hyphal and biofilm. The aggregation of spores is a primary step of fungal biofilm development in aquatic systems. Previous studies on the inactivation of fungi were mostly performed in the monodisperse state of fungal spores and biofilm state, however, the inactivation of aggregated fungal spores is still unclear. In this study, the aggregated characteristics of fungal spores (Aspergillus fumigatus and Aspergillus flavus) at different pH values were firstly studied, and the inactivation efficiency of fungal spores at different aggregation degree by chlorine-based disinfectants was also clarified. The results showed that the aggregation degree of Aspergillus fumigatus was the highest at pH 9.0 while it was the lowest at pH 5.0. Aggregation between fungal spores was mainly mediated by occasional adhesin-adhesin interactions and electrostatic interactions. Compared with monodisperse spores, fungal spores were more resistant to chlorine-based disinfectants with the increase of spore aggregation degree. The inactivation rate constants of Aspergillus fumigatus at 30% and 63% aggregation degree were 1.5- and 4-folds lower than that of monodisperse spores, respectively. The lower proportion of membrane damage and higher intracellular reactive oxygen species level for aggregated spores than monodisperse spores was observed according to the flow cytometric results after chlorine-based disinfectants treatment. The reasons for the lower inactivation efficiency of aggregated spores are as following: the protection of outer layer spores and signals between aggregates lead to the increase of resistance for aggregated spores. This study is meaningful for the control of the fungal spores at different states in water.


Asunto(s)
Cloro , Desinfectantes , Aspergillus , Biopelículas , Desinfectantes/farmacología , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...