Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(16): 12594-12599, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38596870

RESUMEN

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

2.
Phys Chem Chem Phys ; 25(12): 8882-8890, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36916444

RESUMEN

The interaction between rare earth and iron spins in rare earth orthoferrites leads to remarkable phenomena, such as the spin-flip process. This is despite the rare earth spins not being magnetically ordered. Instead, they are polarized by the ordered iron spins. The interaction between the two spin families is not well understood. This study reports the temperature dependence of the net magnetic moment for rare earth spins, by measuring the overall magnetization for ErFeO3 and NdFeO3 single crystals. The obtained temperature dependence can be described well using a model based on the mean field theory, giving tanh(const./T) temperature dependence. This functional dependence is not disrupted by the spin-flip transition as the crystals are cooled.

3.
ACS Photonics ; 10(2): 552-553, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36820327

RESUMEN

[This corrects the article DOI: 10.1021/acsphotonics.7b01402.].

4.
Inorg Chem ; 61(37): 14815-14823, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074388

RESUMEN

Field-tuning mechanisms of spin switching and spin reorientation (SR) transition were investigated in a series of high-quality single crystal samples of PrxEr1-xFeO3 (x = 0, 0.1, 0.3, 0.5) prepared using the optical floating zone method. The single crystal quality, structure, and axis orientation were determined by room-temperature powder X-ray diffraction, back-reflection Laue X-ray diffraction, and Raman scattering at room temperature. Magnetic measurements indicate that the type and temperature region of SR transition are tuned by introducing different ratios of Pr3+ doping (x = 0, 0.1, 0.3, 0.5). The trigger temperatures of spin switching and magnetization compensation temperature of PrxEr1-xFeO3 crystals can be adjusted by doping with different proportions of Pr3+. Furthermore, the trigger temperature of the two types of spin switching in Pr0.3Er0.7FeO3 along the a-axis can be regulated by an external field. Meanwhile, the isothermal magnetic field-triggered spin switching effect is also observed along the a and c-axes of Pr0.3Er0.7FeO3. An in-depth understanding of the magnetic coupling and competition between the R3+ and Fe3+ magnetic sublattices, within the RFeO3 system, has important implications for advancing the practical applications of the relevant spin switching materials.

5.
Nat Commun ; 13(1): 443, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064133

RESUMEN

Many material properties such as superconductivity, magnetoresistance or magnetoelectricity emerge from the non-linear interactions of spins and lattice/phonons. Hence, an in-depth understanding of spin-phonon coupling is at the heart of these properties. While most examples deal with one magnetic lattice only, the simultaneous presence of multiple magnetic orderings yield potentially unknown properties. We demonstrate a strong spin-phonon coupling in SmFeO3 that emerges from the interaction of both, iron and samarium spins. We probe this coupling as a remarkably large shift of phonon frequencies and the appearance of new phonons. The spin-phonon coupling is absent for the magnetic ordering of iron alone but emerges with the additional ordering of the samarium spins. Intriguingly, this ordering is not spontaneous but induced by the iron magnetism. Our findings show an emergent phenomenon from the non-linear interaction by multiple orders, which do not need to occur spontaneously. This allows for a conceptually different approach in the search for yet unknown properties.

6.
Phys Chem Chem Phys ; 24(2): 735-742, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935008

RESUMEN

The magnetic behavior of a rare-earth orthoferrite ErFeO3 single crystal can be controlled by low magnetic fields from a few to hundreds of Oe. Here we investigated a high-quality ErFeO3 single crystal in the temperature range of 5-120 K, with two types of spin switching in the field-cooled-cooling (FCC) and field-cooled-warming (FCW) processes below the temperature of the spin reorientation (SR) transition from Γ4 to Γ2 at 98-88 K. The magnitude of the applied magnetic fields can regulate two types of spin switching along the a-axis of the ErFeO3 single crystal but does not affect the type and temperature range of the SR transition. An interesting "multi-step" type-II spin switching is observed in FCW under low magnetic fields (H < 18 Oe) just below the SR transition temperature, which is associated with the interaction and the change of magnetic configurations from rare-earth and iron magnetic sublattices. When the magnetic field is lower than 15 Oe, the type-II spin switching in the FCW process gradually changes to a continuous magnetic transition along the a-axis of the ErFeO3 single crystal. As the magnetic field is reduced to less than 17 Oe, the type-I spin switching in the FCW process also transforms into a continuous magnetic transition. Understanding the magnetic reversal effects will help us explore the potential applications of these magnetic materials for future information devices.

7.
ACS Appl Mater Interfaces ; 13(35): 42138-42145, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432434

RESUMEN

By preparing a series of high-quality Fe1.1Se0.8Te0.2 films on the CaF2 substrate via pulsed laser deposition, we reveal the evolution of the structure as well as the superconductivity with the film thickness. We have found that there exists a threshold thickness above which the critical temperature Tc reaches its optimal value of 23.18 K with large activation energy, promising for high-field technological applications. Most importantly, the thick films have been found in a metastable state due to the fragile balance between the increased strain energy and the large compressive stress. Once the balance is broken by an external perturbation, a unique structure avalanche happens with a large part of the film exfoliated from the substrate and curves out. The exfoliated part of the film remains a single phase, with its lattice parameter and Tc recovering the bulk values. Our results clearly demonstrate the close relation between the compressive stress of the film/substrate interface and the high critical temperature observed in FeSeTe films. Moreover, this also provides an efficient way to fabricate free-standing single-phase FeSeTe crystals in the phase-separation regime.

8.
Nat Commun ; 12(1): 3115, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035241

RESUMEN

Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system's ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.

9.
J Phys Condens Matter ; 33(33)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34049303

RESUMEN

Among all the iron-based superconductors, the 11 series has the simplest layered structure but exhibits rich physical phenomenon. In this work, we have synthesized Fe1-xCoxS single crystals with tetragonal structure and studied their structure and magnetic properties. Magnetic susceptibility measurements indicate that the cobalt doping would suppress superconductivity and even introduce weak ferromagnetism besides antiferromagnetism. Scanning electron microscopy study reveals that the Co-doped samples exhibit intrinsic phase separation. Moreover, magnetic force microscopy measurement shows no magnetic domain in Fe1-xCoxS, indicating that neither phase is pure ferromagnetic. The coexistence of ferromagnetism and antiferromagnetism leads to the relatively large exchange bias field. Since the exchange bias effect has been widely used in the field of information storage, spin-valves, and magnetic tunnel junctions, our study provides another option for further application.

10.
Nanoscale ; 13(18): 8506-8513, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33904555

RESUMEN

The oxide interface has been studied extensively in the past decades and exhibits different physical properties from the constituent bulks. Using first-principles electronic structure calculations, we investigated the interface of CdTiO3/BaTiO3 (CTO/BTO) superlattice with ferroelectric BaTiO3. In this case, the conduction bands of CdTiO3 are composed of Cd-5s orbitals with low electron effective mass and nondegenerate dispersion, and thus expected to have high mobility. We predicted a controllable conductivity at the interface, and further analyzed how the polarization direction and strength affect the conductivity. We also explored the relationship between two components: thickness and polarization. Intriguingly, the total polarization in CTO/BTO might be even larger than that of ferroelectric bulk BaTiO3. Therefore, we found a way to maximize the superlattice polarization by increasing the fraction of the CdTiO3 layers, based on the interesting dependence of the total polarization and CTO/BTO ratio.

11.
J Phys Condens Matter ; 33(27)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33930882

RESUMEN

We investigate the detailed analysis of the magnetic properties in a series of Pr1-xSmxFeO3single crystals fromx= 0 to 1 with an interval of 0.1. Doping controlled spin reorientation transition temperatureTSRΓ4(Gx,Ay,Fz) to Γ2(Fx,Cy,Gz) covers a wide temperature range including room temperature. A 'butterfly'-shape type-I spin switching with 180° magnetization reversal occurs below and above the magnetization compensation points inx= 0.4 to 0.8 compounds. Interestingly, in Pr0.6Sm0.4FeO3single crystal, we find an inadequate spin reorientation transition accompanied by uncompleted type-I spin switching in the temperature region from 138 to 174 K. Furthermore, a type-II spin switching appears at 23 K, as evidenced from the magnetization curve in field-cooled-cooling (FCC) mode initially bifurcate from zero-field-cooled (ZFC) magnetization curve at 40 K and finally drops back to coincide the ZFC magnetization value at 23 K. Our current research reveals a strong and complex competition between Pr3+-Fe3+and Sm3+-Fe3+exchange interactions and more importantly renders a window to design spintronic device materials for future potential applications.

12.
Phys Chem Chem Phys ; 23(9): 5415-5421, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33646225

RESUMEN

The dynamics of the magnetic moment reversal is studied for ErFeO3 and NdFeO3 single crystals. The reversal occurs at 41 and 5.1 K for ErFeO3 and NdFeO3, respectively, at a field of 300 Oe. The dynamics of the magnetization reversal process depends on the temperature at which the reversal occurs. The reversal is abrupt if the thermal energy is far higher than the energy of Zeeman splitting of the rare earth ion levels by internal fields, as observed for ErFeO3. A gradual magnetization reversal occurs for NdFeO3 over 64 s, when the thermal energy at the temperature of the reversal is well below the Zeeman splitting energy of Nd3+ spins. A mechanism for this gradual magnetization reversal is proposed in terms of the thermal re-population of Zeeman doublets of Nd3+ ions, the splitting energy of which continuously changes during the magnetization reversal.

13.
Phys Chem Chem Phys ; 23(9): 5578-5582, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33655285

RESUMEN

Density functional theory (DFT) calculations are performed to predict the structural, electronic and magnetic properties of electrically neutral or charged few-atomic-layer (AL) oxides based on polar perovskite KTaO3. Their properties vary greatly with the number of ALs (nAL) and the stoichiometric ratio. In the few-AL limit (nAL ≤ 14), the even AL (EL) systems with the chemical formula (KTaO3)n are semiconductors, while the odd AL (OL) systems with the formula Kn+1TanO3n+1 or KnTan+1O3n+2 are half-metal except for the unique KTa2O5 case which is a semiconductor due to the large Peierls distortions. After reaching a certain critical thickness (nAL > 14), the EL systems show ferromagnetic surface states, while ferromagnetism disappears in the OL systems. These predictions from fundamental complexity of polar perovskite when approaching the two-dimensional (2D) limit may be helpful for interpreting experimental observations later.

14.
Phys Chem Chem Phys ; 22(37): 21403-21411, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32940304

RESUMEN

The temperature-dependent spin-reorientation transition (SRT) and spin interaction mechanism of bulk TmFeO3 were studied by the electron paramagnetic resonance (EPR) method. The combined experimental results of magnetic curves and EPR spectra confirmed that there is an antiferromagnetic transition at 85 K with a reentering ferromagnetic state due to the spin-reorientation behavior. In the high-temperature region of T > 90 K, there are three distinct resonance peaks in the EPR spectrum, which indicates the presence of multiple magnetic phases (canted antiferromagnetic, weak ferromagnetic, and paramagnetic phases). In the low-temperature region (T < 85 K), the temperature dependence of the EPR linewidth, effective g-factor, and intensity can be used to infer a strong spin-lattice correlation. Different magnetic interactions such as Fe3+-Fe3+, Fe3+-Tm3+, and Tm3+-Tm3+ lead to a paramagnetic-canted antiferromagnetic phase at T > 85 K, with SRT between 85-65 K and ferromagnetic interaction at the lower temperature, respectively. Above 90 K, we find that the spin relaxation mechanism is determined by the mixture of spin-spin and spin-lattice interactions. Below 85 K, the transverse relaxation rate increases with the decrease in temperature, which is consistent with the weakening of the fluctuating internal field in this temperature region. This EPR detection provides a new method to clarify the strong spin coupling in antiferromagnetic materials.

15.
Nanoscale Horiz ; 5(3): 530-540, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32118209

RESUMEN

Lithium-sulfur batteries (LSBs) have gained considerable attention for their desirable energy densities, high theoretical capacities, low cost and environmentally friendly properties. However, the shuttle effect of polysulfides seriously hinders their future practical applications. Herein, a dual-function cathode structure, consisting of 3D porous FeP/rGO microspheres supported on both aluminum foil and a commercial separator, exhibits excellent performance by providing strong adsorption with respect to Li2Sx (x = 1, 2, 4, 6 and 8) and S8. In this rational design, the iron phosphide (FeP) nanoparticles act as a catalyst to accelerate polysulfide conversion and as the designated sites for adsorption. The 3D rGO porous conductive network can provide enough space for sulfur loading and to physically adsorb the polysulfides. More importantly, density functional theory (DFT) calculations also verified the strong interactions (with adsorption energy values of -4.21 to -1.97 eV) between the FeP(111) surface and the sulfur species. The electrochemical results show that the cell using the dual-function cathode structure delivers a capacity of 925.7 mA h g-1, with capacity degradation of 0.05% per cycle after 500 cycles, at a current density of 0.5C. It is also worth mentioning that the cell with sulfur loading of ∼2.2 mg cm-2 maintained a high capacity of 483 mA h g-1 at 0.5C after 500 cycles. In summary, the above results demonstrate the promising application of the dual-function cathode structure for high-performance LSBs.

16.
J Phys Condens Matter ; 32(18): 185401, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952053

RESUMEN

TmFeO3, a canted antiferromagnet, has two intrinsic spin resonance modes in the terahertz (THz) frequency regime: quasi-ferromagnetic (q-FM) mode and quasi-antiferromagnetic (q-AFM) mode. Both the q-FM and q-AFM modes show strong magnetic field and temperature dependence. Hereby, by employing THz time-domain spectroscopy combined with external magnetic field and low temperature system, we systematically investigated the magnetic field induced frequency shift of q-FM and q-AFM modes as well as the temperature driven spin reorientation phase transition in TmFeO3 single crystal. In contrast to the isotropic temperature dependent two-mode, the magnetic field dependence of two-mode is strongly anisotropic: the magnetic field applied along c-axis (a-axis) can harden (soften) the spin resonance frequency of q-FM mode for Γ4 phase of TmFeO3, and the field applied along b-axis shows negligible frequency shift for the q-FM mode, with the q-AFM mode relatively stable. The present study provides solid evidence that the magnetic anisotropy in rare earth orthoferrite plays a dominant role in the q-FM mode and the occurrence of spin reorientation phase transition. With the magnetic anisotropic energy obtained from the temperature dependent q-FM and q-AFM mode frequencies, we can predict both magnetic field and temperature dependence of spin resonance in TmFeO3 single crystal via phenomenological analysis.

17.
Phys Chem Chem Phys ; 21(46): 25826-25837, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31729504

RESUMEN

The Z-type hexaferrites Ba3(Zn1-xCox)2Fe24O41 (x = 0.2, 0.4, 0.6, 0.8, defined as Z1-Z4) were synthesized by a sol-gel method. With increasing cobalt concentration, the origin of magnetoelectric (ME) coupling and the effects of crystal parameters, occupation of ions, and magnetocrystalline anisotropy (MCA) on ME current were studied systematically. The mechanism of magnetic phase transition, revealing the evolution of the magnetic order in the temperature range of 10-400 K, was discussed in detail. Our results suggest that the ferroelectricity of Z1-Z4 originates from both inverse Dzyaloshinskii Moriya (DM) interaction and p-d hybridization mechanism. In particular the ME coupling property is only dominated by p-d hybridization with spin-orbit coupling. This study provides an effective way to improve the ME coupling property of hexaferrites, which have potential applications in the design of new electronic devices.

18.
Phys Chem Chem Phys ; 21(35): 19181-19191, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31433409

RESUMEN

We report the physical properties of Eu-doped bulk TmFeO3 through X-ray diffraction, magnetic susceptibility (χ), Raman scattering and X-ray absorption spectroscopy (XAS) study, which shows a similar orthorhombic structure with the Pbnm space group as TmFeO3. Magnetic measurement on Eu-doped TmFeO3 provides evidence for spin reorientations of Fe3+. Further, the Raman spectra of Eu3+ doped TmFeO3 show significant changes in Raman modes as a function of temperature, which are evidence for strong spin-lattice interaction. From the XAS spectra, the L-edge of Fe provides information on the valence state of Fe, whereas the K-edge of oxygen shows that the compound has a strong influence on the hybridization of the O(2p) state with the 3d states of Fe.

19.
J Phys Condens Matter ; 31(43): 435801, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31272085

RESUMEN

The spin switching and exchange bias effect were investigated in the rare earth orthoferrite SmFeO3 composed of two antiferromagnetically coupled sublattices Sm3+ and Fe3+ with canted ferromagnetic moments and a temperature induced spin switching in single crystal SmFeO3 was observed. The spin switching temperature was found to be modulated by exerting different magnetic fields below the compensation temperature ([Formula: see text]). This effect could be explained as the changes of energy barrier related to the magnetization direction under different magnetic fields. In the meantime, the coercivity displayed strong dependence on the maximum applied magnetic fields in the hysteresis measurement. In addition, spontaneous exchange bias effect (EB) was observed with the largest EB field value of 1.2 T, and the EB field changed its sign across the compensation point. Our results indicate that the magnetic properties of SmFeO3 can be strongly affected and controlled by the temperature or the applied magnetic field during the measurement process, and it might lead to novel applications in magneto-optics, ultrafast switching, and magnetic sensing devices.

20.
J Phys Condens Matter ; 31(23): 235801, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30844785

RESUMEN

Neutron powder diffraction experiments were carried out on the magnetoelectric compound series (Co4-x Mn x )Nb2O9 (x = 0, 1, 2, 3, 3.5, 3.9, 3.95 and 4) from base temperature to above their Néel temperatures. Their magnetic structures were analysed by using the irreducible representation analysis and Rietveld refinement method. Similar to Co4Nb2O9, the compounds with x ⩽ 3.9 have noncollinear in-plane magnetic structures (Γ6) with magnetic moments lying purely in the ab plane with certain canting angles. Mn4Nb2O9 has a collinear antiferromagnetic structure (Γ2) with magnetic moments aligning along the c axis. The compound of x = 3.95 shows two magnetic phases in the magnetization, which was confirmed to have the Γ2 magnetic structure above 60 K and develop a second Γ6 local phase in addition to the main Γ2 phase due to doping. This study indicates 2.5 at% Co2+ doping is sufficient to alter the collinear easy-axis magnetic structure of Mn4Nb2O9 into the noncollinear easy-plane magnetic structure, which is attributed to the large easy-plane anisotropy of Co2+ and relative small Ising-like anisotropy of Mn2+. The doping effects on the Néel temperature and occupancy are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...