Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Muscle Res Cell Motil ; 44(3): 165-178, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37115473

RESUMEN

Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.


Asunto(s)
Actinas , Tomografía con Microscopio Electrónico , Ratas , Animales , Actinas/metabolismo , Miocardio/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Mamíferos/metabolismo
2.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33914027

RESUMEN

Activation of inflammation by lipopolysaccharide (LPS) is an important innate immune response. Here we investigated the contribution of caspases to the LPS-mediated inflammatory response and discovered distinctive temporal roles of RIPK1 in mediating proinflammatory cytokine production when caspases are inhibited. We propose a biphasic model that differentiates the role of RIPK1 in early versus late phase. The early production of proinflammation cytokines stimulated by LPS with caspase inhibition is mediated by the NF-κB pathway that requires the scaffold function of RIPK1 but is kinase independent. Autocrine production of TNFα in the late phase promotes the formation of a novel TNFR1-associated complex with activated RIPK1, FADD, caspase-8, and key mediators of NF-κB signaling. The production of proinflammatory cytokines in the late phase can be blocked by RIPK1 kinase inhibitor Nec-1s. Our study demonstrates a mechanism by which the activation of RIPK1 promotes its own scaffold function to regulate the NF-κB-mediated proinflammatory cytokine production that is negatively regulated by caspases to restrain inflammatory signaling.


Asunto(s)
Caspasa 8/química , Inhibidores de Caspasas/farmacología , Citocinas/metabolismo , Inmunidad Innata/efectos de los fármacos , Inflamación/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(25): 14231-14242, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513687

RESUMEN

Transforming growth factor ß-activated kinase1 (TAK1) encoded by the gene MAP3K7 regulates multiple important downstream effectors involved in immune response, cell death, and carcinogenesis. Hepatocyte-specific deletion of TAK1 in Tak1ΔHEP mice promotes liver fibrosis and hepatocellular carcinoma (HCC) formation. Here, we report that genetic inactivation of RIPK1 kinase using a kinase dead knockin D138N mutation in Tak1ΔHEP mice inhibits the expression of liver tumor biomarkers, liver fibrosis, and HCC formation. Inhibition of RIPK1, however, has no or minimum effect on hepatocyte loss and compensatory proliferation, which are the recognized factors important for liver fibrosis and HCC development. Using single-cell RNA sequencing, we discovered that inhibition of RIPK1 strongly suppresses inflammation induced by hepatocyte-specific loss of TAK1. Activation of RIPK1 promotes the transcription of key proinflammatory cytokines, such as CCL2, and CCR2+ macrophage infiltration. Our study demonstrates the role and mechanism of RIPK1 kinase in promoting inflammation, both cell-autonomously and cell-nonautonomously, in the development of liver fibrosis and HCC, independent of cell death, and compensatory proliferation. We suggest the possibility of inhibiting RIPK1 kinase as a therapeutic strategy for reducing liver fibrosis and HCC development by inhibiting inflammation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Biomarcadores de Tumor , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Muerte Celular , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Hepatocitos/patología , Inflamación/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/genética , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores CCR2/metabolismo
4.
Cell Death Dis ; 9(5): 500, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29703889

RESUMEN

Necroptosis, a form of regulated necrotic cell death, is mediated by receptor interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). However, the mechanism by which necroptosis promotes inflammation is still unclear. Here we report that the expression of cytokines is robustly upregulated in a cell-autonomous manner during necroptosis induced by tumor necrosis factor alpha (TNFα). We demonstrate that TNFα-induced necroptosis leads to two waves of cytokine production. The first wave, more transient and weaker than the second, is in response to TNFα alone; whereas the second wave depends upon the necroptotic signaling. We show that necroptosis promotes the transcription of TNFα-target genes in a cell-intrinsic manner. The activation of both NF-κB and p38 by the necroptotic machinery, RIPK1, RIPK3, and MLKL, is involved in mediating the robust induction of cytokine expression in the second wave. In contrast, necroptosis induced by direct oligomerization of MLKL promotes cytokine production at much lower levels than that of necroptosis induced with TNFα. Thus, we conclude that TNFα-induced necroptosis signaling events mediated by RIPK1 and RIPK3 activation, in addition to the MLKL oligomerization, promotes the expression of cytokines involving multiple intracellular signaling mechanisms including NF-κB pathway and p38. These findings reveal that the necroptotic cell death machinery mounts an immune response by promoting cell-autonomous production of cytokines. Our study provides insights into the mechanism by which necroptosis promotes inflammation in human diseases.


Asunto(s)
Quimiocina CXCL1/genética , Regulación de la Expresión Génica/inmunología , Necrosis/genética , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/inmunología , Línea Celular , Quimiocina CXCL1/agonistas , Quimiocina CXCL1/inmunología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Células HEK293 , Células HT29 , Humanos , Ratones , Necrosis/inmunología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Proteínas Quinasas/inmunología , Multimerización de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Transducción de Señal , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
5.
Am J Physiol Heart Circ Physiol ; 313(6): H1213-H1226, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887330

RESUMEN

Patients with hypertrophic cardiomyopathy, particularly young adults, can die from arrhythmia, but the mechanism underlying abnormal rhythm formation remains unknown. C57Bl6 × CBA/Ca mice carrying a cardiac actin ( ACTC) E99K (Glu99Lys) mutation reproduce many aspects of human hypertrophic cardiomyopathy, including increased myofilament Ca2+ sensitivity and sudden death in a proportion (up to 40%) of young (28-40 day old) animals. We studied the hearts of transgenic (TG; ACTC E99K) mice and their non-TG (NTG) littermates when they were in their vulnerable period (28-40 days old) and when they were adult (8-12 wk old). Ventricular myocytes were isolated from the hearts of TG and NTG mice at these two time points. We also examined the hearts of mice that died suddenly (SCD). SCD animals had approximately four times more collagen compared with age-matched NTG mice, yet myocyte cell size was normal. Young TG mice had double the collagen content of NTG mice. Contraction and Ca2+ transients were greater in cells from young TG mice compared with their NTG littermates but not in cells from adult mice (TG or NTG). Cells from young TG mice had a greater propensity for Ca2+ waves than NTG littermates, and, despite similar sarcoplasmic reticulum Ca2+ content, a proportion of these cells had larger Ca2+ spark mass. We found that the probability of SCD in young TG mice was increased when the mutation was expressed in animals with a CBA/Ca2+ background and almost eliminated in mice bred on a C57Bl6 background. The latter TG mice had normal cellular Ca2+ homeostasis. NEW & NOTEWORTHY Mice with the actin Glu99Lys hypertrophic cardiomyopathy mutation ( ACTC E99K) are prone to sudden cardiac death around 40 days, associated with increased Ca2+ transients, spark mass, and fibrosis. However, adult survivors have normal Ca2+ transients and spark density accompanied by hypertrophy. Penetrance of the sudden cardiac death phenotype depends on the genetic background of the mouse. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/calcium-regulation-in-e99k-mouse-heart/ .


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica/metabolismo , Muerte Súbita Cardíaca , Antecedentes Genéticos , Actinas/genética , Factores de Edad , Animales , Cardiomiopatía Hipertrófica/genética , Células Cultivadas , Colágeno/metabolismo , Corazón/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mutación Missense , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...