Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Plant Physiol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743633

RESUMEN

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

2.
J Integr Plant Biol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578160

RESUMEN

Structural variations (SVs) are a feature of plant genomes that has been largely unexplored despite their significant impact on plant phenotypic traits and local adaptation to abiotic and biotic stress. In this study, we employed woolly grape (Vitis retordii), a species native to the tropical and subtropical regions of East Asia with both coastal and inland habitats, as a valuable model for examining the impact of SVs on local adaptation. We assembled a haplotype-resolved chromosomal reference genome for woolly grape, and conducted population genetic analyses based on whole-genome sequencing (WGS) data from coastal and inland populations. The demographic analyses revealed recent bottlenecks in all populations and asymmetric gene flow from the inland to the coastal population. In total, 1,035 genes associated with plant adaptive regulation for salt stress, radiation, and environmental adaptation were detected underlying local selection by SVs and SNPs in the coastal population, of which 37.29% and 65.26% were detected by SVs and SNPs, respectively. Candidate genes such as FSD2, RGA1, and AAP8 associated with salt tolerance were found to be highly differentiated and selected during the process of local adaptation to coastal habitats in SV regions. Our study highlights the importance of SVs in local adaptation; candidate genes related to salt stress and climatic adaptation to tropical and subtropical environments are important genomic resources for future breeding programs of grapevine and its rootstocks.

3.
Opt Express ; 32(7): 12081-12091, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571041

RESUMEN

The traditional analysis method for super multi-view 3D display based on geometric optics, which approximates the lenticular lenses as a series of pinhole structures, ignored the chromatic aberration. In this paper, the optimization method based on diffraction theory is proposed for super multi-view 3D display, where the wavefronts are evaluated accurately by the forward propagation method, and the chromatic aberration of the synthetic viewpoint image is reduced dramatically by the backward reconstruction optimization method (BROM). The optical experiment is performed to verify the feasibility of the method, which is consistent with numerical simulation results. It is proved that the proposed method simulates the physical propagation process of super multi-view 3D display and improves the reconstructed image quality. In the future, it can be used to achieve the super multi-view 3D light field technology with low crosstalk.

4.
Mol Plant ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38678365

RESUMEN

Given the escalating impact of climate change on agriculture and food security, gaining insights into the evolutionary dynamics of climatic adaptation and uncovering climate-adapted variation empower the breeding of climate-resilience crops to face future climate change. Alfalfa (Medicago sativa subsp. sativa), the queen of forages with remarkable adaptability across diverse global environments, is an excellent model for investigating species' responses to climate change. We conducted population genomic analyses to unravel alfalfa's climatic adaptation and genetic susceptibility to future climate change, utilizing genome resequencing data from 702 accessions of 24 Medicago species. We found that interspecific genetic exchange has fueled the gene pool of alfalfa, particularly enriching defense and stress response genes. Inter-subspecific introgression between Medicago sativa subsp. falcata (subsp. falcata) and alfalfa not only aids alfalfa's climatic adaptation but also introduces genetic burden. A total of 1671 genes were associated with climatic adaptation, and 5.7% of them were introgression from subsp. falcata. Integrating climate-associated variants and climate data, we identified vulnerable populations to future climate change, particularly in higher latitudes of the northern hemisphere, serving as a clarion call for targeted conservation initiatives and breeding efforts. Moreover, we unveil pre-adaptive populations demonstrating heightened resilience to climate fluctuations, illuminating a pathway for future breeding strategies. This study enhances our understanding of alfalfa's local adaptation and facilitates breeding of climate-resilient cultivars, contributing to effective agricultural strategies facing future climate change.

5.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653919

RESUMEN

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Elonguina , Ubiquitinación , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Elonguina/metabolismo , Elonguina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C , Células MCF-7 , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
CNS Neurosci Ther ; 30(3): e14563, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38481068

RESUMEN

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM: By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS: We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS: TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION: This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/patología , Terapia Combinada , Glioma/terapia , Terapia por Estimulación Eléctrica/métodos , Pronóstico , Neoplasias Encefálicas/patología , Microambiente Tumoral
7.
J Environ Manage ; 356: 120587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520848

RESUMEN

It is challenging to differentiate bacteria residing in the same habitat by direct observation. This difficulty impedes the harvest, application and manipulation of functional bacteria in environmental engineering. In this study, we developed a novel method for rapid differentiation of living denitrifying bacteria based on derivative synchronous fluorescence spectroscopy, as exemplified by three heterotrophic nitrification-aerobic denitrification bacteria having the maximum nitrogen removal efficiencies greater than 90%. The intact bacteria and their living surroundings can be analyzed as an integrated target, which eliminates the need for the complex pre-processing of samples. Under the optimal synchronous scanning parameter (Δλ = 40 nm), each bacterium possesses a unique fluorescence spectral structure and the derivative synchronous fluorescence technique can significantly improve the spectral resolution compared to other conventional fluorescence methods, which enables the rapid differentiation of different bacteria through derivative synchronous fluorescence spectra as fast as 2 min per spectrum. Additionally, the derivative synchronous fluorescence technique can extract the spectral signals contributed by bacterial extracellular substances produced in the biological nitrogen removal process. Moreover, the results obtained from our method can reflect the real-time denitrification properties of bacteria in the biological nitrogen removal process of wastewater. All these merits highlight derivative synchronous fluorescence spectroscopy as a promising analytic method in the environmental field.


Asunto(s)
Desnitrificación , Nitrificación , Fluorescencia , Aerobiosis , Bacterias , Nitrógeno , Procesos Heterotróficos , Nitritos
8.
Leukemia ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459169

RESUMEN

G-protein coupled receptor 15 (GPR15) is expressed on T-cells. We previously reported knockout of GPR15 increased acute graft-versus-host disease (GvHD) in mice. In this study, we identified thrombin receptor activating peptide-6 (TRAP-6, peptide sequence: SFLLRN) as an activator of GPR15. GRP15 and ß-arrestin2 were needed for TRAP-6-mediated inhibition of mixed lymphocyte reactions. TRAP-6 decreased acute GvHD in allotransplant models in mice, an effect dependent on GPR15-expression in donor T-cells. RNA-seq and protein analyses indicated TRAP-6 increased binding of ß-arrestin2/TAB1 and inhibited phosphorylation of TAK1 and NF-κB-P65. GPR15 is expressed differently on CD4+ T-cells and CD8+ T-cells. TRAP-6 inhibited phosphorylation of NF-κB-P65 in CD4+ T-cells but increased granzyme B expression in CD8+ T-cells. TRAP-6 decreased acute GvHD without inhibiting graft-versus-tumor (GvT) efficacy against A20 lymphoma cells. SALLRN, a mutant of TRAP-6, preserved the anti-acute GvHD effect but avoided the adverse effects of TRAP-6. TRAP-6 and SALLRN also decreased allogeneic and xenogeneic reactions induced by human blood mononuclear cells. In conclusion, TRAP-6 activated GPR15 on T-cells and decreased acute GvHD in mice without impairing GvT efficacy.

9.
J Adv Res ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38341031

RESUMEN

INTRODUCTION: The long-term overuse of malachite green (MG) has potential carcinogenic, teratogenic, and mutagenic effects. The functional nanocomposite is novel and challenging to construct and implement through surface enhanced Raman scattering (SERS) strategy to reveal the contributions in application. OBJECTIVES: The novel Ag-CDs (carbon dots)-PBA (phenyl boric acid) nanocomposite was constructed by a facile route to detect toxic MG molecule with high SERS sensitivity and good uniformity. METHODS: The enhanced substrate used for the detection of MG has been successfully constructed using PBA modulated Ag-CDs on a structured surface with rich binding sites. RESULTS: The fabricated Ag-CDs-PBA substrate can be used to analyze various probe molecules exhibiting high sensitivity, good signal reproducibility, and excellent stability. The mechanism between components has been proved by calculations originating from the plasmonic Ag and active electronic transmission among the bridging CDs and PBA via the close spatial π-π effect. In addition, the accelerated separation of electron-hole pairs was triggered to further improve the SERS activity of the hybrid via a bidirectional charge transfer (CT) process. Significantly, the Ag-CDs-PBA system shows distinctive selectivity, in which PBA can hinder the interference of other species without specific hydroxyl groups. CONCLUSION: Based on this deeper insight on plasmon-mediated mechanism, the SERS substrate was successfully practiced for quantitative determination in real water and fish samples. The strategy developed promises to be a new sensor technology and has great potential for environmental and food safety applications.

10.
Hortic Res ; 11(1): uhad252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269295

RESUMEN

The genetic and epigenetic mechanisms underlying the coexistence and coordination of the four diverged subgenomes (ABCD) in octoploid strawberries (Fragaria × ananassa) remains poorly understood. In this study, we have assembled a haplotype-phased gap-free octoploid genome for the strawberry, which allowed us to uncover the sequence, structure, and epigenetic divergences among the subgenomes. The diploid progenitors of the octoploid strawberry, apart from subgenome A (Fragaria vesca), have been a subject of public controversy. Phylogenomic analyses revealed a close relationship between diploid species Fragaria iinumae and subgenomes B, C, and D. Subgenome A, closely related to F. vesca, retains the highest number of genes, exhibits the lowest content of transposable elements (TEs), experiences the strongest purifying selection, shows the lowest DNA methylation levels, and displays the highest expression level compared to the other three subgenomes. Transcriptome and DNA methylome analyses revealed that subgenome A-biased genes were enriched in fruit development biological processes. In contrast, although subgenomes B, C, and D contain equivalent amounts of repetitive sequences, they exhibit diverged methylation levels, particularly for TEs located near genes. Taken together, our findings provide valuable insights into the evolutionary patterns of subgenome structure, divergence and epigenetic dynamics in octoploid strawberries, which could be utilized in strawberry genetics and breeding research.

11.
Plant Physiol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285049

RESUMEN

Plant domestication shapes gene contents between the cultivars and their wild progenitors. Previously, short-reads and small variants (SNPs, indels and microsatellites) were mostly used to study grapevine (Vitis vinifera) domestication processes. Due to the lack of population-level assemblies for both the crop and its wild progenitors, capturing gene gain and loss caused by large structural variants remains a challenge. Here, we applied comparative genomic analyses to discover gene gain and loss during grapevine domestication using long-read assemblies of representative population samples for both domesticated grapevines (V. vinifera ssp. vinifera) and their wild progenitors (V. vinifera ssp. sylvestris). Only ∼7% of gene families were shared by 16 Vitis genomes while ∼8% of gene families were specific to each accession, suggesting dramatic variations of gene contents in grapevine genomes. Compared to wild progenitors, the domesticated accessions possessed more genes involved in asexual reproduction, while the wild progenitors harbored more genes related to pollination, revealing the transition from sexual reproduction to clonal propagation during domestication processes. Moreover, the domesticated accessions harbored fewer disease-resistance genes than wild progenitors. The structural variants occurred frequently in aroma and disease-resistance related genes between domesticated grapevines and wild progenitors, indicating the rapid diversification of these genes during domestication. Our study provides insights and resources for biological studies and breeding programs in grapevine.

12.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37976469

RESUMEN

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/genética , Diferenciación Celular , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
14.
Commun Biol ; 6(1): 1260, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087033

RESUMEN

BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Membranas Mitocondriales/metabolismo
15.
Hortic Res ; 10(11): uhad205, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38046853

RESUMEN

Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.

16.
Heliyon ; 9(11): e22190, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045224

RESUMEN

Acetonitrile wastewater is difficult to treat due to its high salinity and toxicity to microorganisms. In this paper, a micro electro-activated carbon fiber coupled system (ME-ACF) was established to treat simulated acetonitrile wastewater. In the 200 ml system, the concentration of acetonitrile adsorbed by ACF was 91.3 mg/L, while that of acetonitrile adsorbed by ME-ACF was 150.6 mg/L, and the removal efficiency was increased by 65 % in comparison. The activated carbon fibers before and after the reaction were subjected to a series of characterization, and it was found that the SABET decreased from 1393.48 m2/g to 1114.93 m2/g and 900.23 m2/g, respectively, but the oxygen on the surface of the activated carbon fibers was increased, and the effect of the micro electrolytic system on the activated carbon fibers was then analyzed. The possible reasons for the formation of acetic acid contained in the products were also discussed using DFT simulations. The removal mechanism of acetonitrile by ME-ACF was considered to be electrically enhanced adsorption and electro-catalytic hydrolysis.

17.
Elife ; 122023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131294

RESUMEN

Background: Emerging data have supported the immunostimulatory role of radiotherapy, which could exert a synergistic effect with immune checkpoint inhibitors (ICIs). With proven effective but suboptimal effect of ICI and chemotherapy in triple-negative breast cancer (TNBC), we designed a pilot study to explore the efficacy and safety of neoadjuvant stereotactic body radiotherapy (SBRT) plus adebrelimab and chemotherapy in TNBC patients. Methods: Treatment-naïve TNBC patients received two cycles of intravenous adebrelimab (20 mg/kg, every 3 weeks), and SBRT (24 Gy/3 f, every other day) started at the second cycle, then followed by six cycles of adebrelimab plus nab-paclitaxel (125 mg/m² on days 1 and 8) and carboplatin (area under the curve 6 mg/mL per min on day 1) every 3 weeks. The surgery was performed within 3-5 weeks after the end of neoadjuvant therapy. Primary endpoint was pathological complete response (pCR, ypT0/is ypN0). Secondary endpoints included objective response rate (ORR), residual cancer burden (RCB) 0-I, and safety. Results: 13 patients were enrolled and received at least one dose of therapy. 10 (76.9%) patients completed SBRT and were included in efficacy analysis. 90% (9/10) of patients achieved pCR, both RCB 0-I and ORR reached 100% with three patients achieved complete remission. Adverse events (AEs) of all-grade and grade 3-4 occurred in 92.3% and 53.8%, respectively. One (7.7%) patient had treatment-related serious AEs. No radiation-related dermatitis or death occurred. Conclusions: Adding SBRT to adebrelimab and neoadjuvant chemotherapy led to a substantial proportion of pCR with acceptable toxicities, supporting further exploration of this combination in TNBC patients. Funding: None. Clinical trial number: NCT05132790.


Asunto(s)
Radiocirugia , Neoplasias de la Mama Triple Negativas , Humanos , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Neoadyuvante/efectos adversos , Proyectos Piloto , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/radioterapia
18.
Opt Express ; 31(23): 38146-38164, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017928

RESUMEN

In lens-based display systems, lens aberrations and depth of field (DoF) limitation often lead to blurring and distortion of reconstructed images; Meanwhile, expanding the display DoF will face a trade-off between horizontal resolution and axial resolution, restricting the achievement of high-resolution and large DoF three-dimensional (3D) displays. To overcome these constraints and enhance the DoF and resolution of reconstructed scenes, we propose a DoF expansion method based on diffractive optical element (DOE) optimization and image pre-correction through a convolutional neural network (CNN). This method applies DOE instead of the conventional lens and optimizes DOE phase distribution using the Adam algorithm, achieving depth-invariant and concentrated point spread function (PSF) distribution throughout the entire DoF range; Simultaneously, we utilize a CNN to pre-correct the original images and compensate for the image quality reduction introduced by the DOE. The proposed method is applied to a practical integral imaging system, we effectively extend the DoF of the DOE to 400 mm, leading to a high-resolution 3D display in multiple depth planes. To validate the effectiveness and practicality of the proposed method, we conduct numerical simulations and optical experiments.

19.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37947726

RESUMEN

In recent years, scientists have conducted extensive research on Moiré materials and have discovered some compelling properties. The Moiré superlattice allows superconductivity through flat-band and strong correlation effects. The presence of flat bands causes the Moiré material to exhibit topological properties as well. Modulating electronic interactions with magnetic fields in Moiré materials enables the fractional quantum Hall effect. In addition, Moiré materials have ferromagnetic and antiferromagnetic properties. By tuning the interlayer coupling and spin interactions of the Moiré superlattice, different magnetic properties can be achieved. Finally, this review also discusses the applications of Moiré materials in the fields of photocurrent, superconductivity, and thermoelectricity. Overall, Moiré superlattices provide a new dimension in the development of two-dimensional materials.

20.
NPJ Regen Med ; 8(1): 64, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938575

RESUMEN

Improving regeneration of damaged thymus is important for reconstituting T-cell immunity. Interleukin-22 (IL-22) was proved to improve thymus regeneration through recovering thymic epithelial cells (TECs). The IL-22 receptor IL-22RA1 is crucial for mediating IL-22 functions. Mechanism that regulates IL-22RA1 expression is unknown. Through using TECs-conditional knockout mice, we found aryl hydrocarbon receptor (AHR) is important for thymus regeneration, because Foxn1-cre-mediated AHR knockout (AhrKO) significantly blocks recovery of thymus cells. Giving mice the AHR inhibitor CH-223191 or the AHR agonist FICZ blocks or accelerates thymus regeneration, respectively. AhrKO-mediated blockade of thymus regeneration could not be rescued by giving exogenous IL-22. Mechanistically, AhrKO mice shows decreased IL-22RA1 expression. In the murine TECs cell line mTEC1 cells, targeting AHR shows an impact on IL-22RA1 mRNA levels. Using chromatin immunoprecipitation and luciferase reporter assays, we find AHR co-operates with STAT3, binds the promotor region of IL-22RA1 gene and transcriptionally increases IL-22RA1 expression in mTEC1 cells. Foxn1-cre-mediated IL-22RA1 knockout (Il22ra1KO) blocks thymus regeneration after irradiation. Furthermore, targeting AHR or IL-22RA1 has significant impacts on severity of murine chronic graft-versus-host disease (cGVHD), which is an autoimmune-like complication following allogeneic hematopoietic cell transplantation. Giving FICZ decreases cGVHD, whereas Il22ra1KO exacerbates cGVHD. The impacts on cGVHD are associated with thymus regeneration and T-cell immune reconstitution. In conclusion, we report an unrecognized function of TECs-expressed AHR in thymus regeneration and AHR transcriptionally regulates IL-22RA1 expression, which have implications for improving thymus regeneration and controlling cGVHD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...