Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 173573, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823703

RESUMEN

The impact of global warming on plant abundance has been widely discussed, but it remains unclear how warming affects plant physiological traits, and how these traits contribute to the abundance of aquatic plants. We explored the adjustments in physiological traits of two common aquatic plant species (Potamogeton crispus L. and Elodea canadensis Michx.) and their links to plant abundance in three temperature treatments by determining twelve physiological traits and plant abundance over an 11-month period in outdoor mesocosms. This mesocosms facility has been running uninteruptedly for 16 years, rendering the plants a unique opportunity to adapt to the warming differences. We found that 1) warming reduced the starch storage in winter for P. crispus and in summer for E. canadensis while increased the nitrogenous substances (e.g., TN, FAA, and proline) in winter for P. crispus. 2) For E. canadensis, TC, starch, SC, and sucrose contents were higher in summer than in winter regardless of warming, while TC, SC, and sucrose contents were lower in summer for P. crispus. 3) Warming decreased the association strength between physiological traits and plant abundance for P. crispus but enhanced it for E. canadensis. 4) E. canadensis showed increased interaction strength among physiological traits under warming, indicating increased metabolic exertion in the response to warming, which contributed to the reduction in abundance. Trait interaction strength of P. crispus was reduced under warming, but with less impact on plant abundance compared with E. canadensis. Our study emphasizes that warming alters the network of plant physiological traits and their contribution to abundance and that different strengths of susceptibility to warming of the various plant species may alter the composition of plant communities in freshwater ecosystems.

2.
Chemosphere ; 332: 138899, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169089

RESUMEN

Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.


Asunto(s)
Ecosistema , Lagos , Plantas , Nutrientes , Fósforo
3.
Environ Pollut ; 314: 120210, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170892

RESUMEN

Increasing eutrophication poses a considerable threat to freshwater ecosystems, which are closely associated with human well-being. As important functional entities for freshwater ecosystems, submerged macrophytes have suffered rapidly decline with eutrophication. However, it is unclear whether and how submerged macrophytes maintain their ecological functions under increasing eutrophication stress and the underlying patterns in the process. In the current study, we conducted an extensive survey of submerged macrophytes in 49 lakes and reservoirs (67% of them are eutrophic) on the Yunnan-Guizhou Plateau of southwestern China to reveal the relationship between submerged macrophyte biodiversity and ecosystem functioning (BEF) under eutrophication stress. Results showed that submerged macrophytes species richness, functional diversity (FD), and ß diversity had positive effects on ecosystem functioning, even under eutrophication. Functional diversity was a stronger predictor of community biomass than species richness and ß diversity, while species richness explained higher coverage variability than FD and ß diversity. This suggests that species richness was a reliable indicator when valid functional traits cannot be collected in considering specific ecological process. With increasing eutrophication in water bodies, the mechanisms underlying biodiversity-ecosystem functioning evolved from "niche complementarity" to "selection effects", as evidenced by decreased species turnover and increased nestedness. Furthermore, the relative growth rate, specific leaf area, and ramet size in trade-off of community functional composition became smaller along eutrophication while flowering duration and shoot height became longer. This study contributes to a better understanding of positive BEF in freshwater ecosystems, despite increasing anthropogenic impacts. Protecting the environment remained the effective way to protect biodiversity and corresponding ecological functions and services. It will be important to consider different facets of biodiversity on ecosystem functioning in future studies to improve effective management plans.


Asunto(s)
Ecosistema , Eutrofización , Humanos , China , Biodiversidad , Lagos , Agua
4.
J Environ Manage ; 301: 113898, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626943

RESUMEN

In shallow eutrophic lakes, submersed macrophytes are essential for maintaining a clear water state, and they are affected markedly by fishes directly through herbivory and indirectly by fish-invertebrate-periphyton complexity, a pathway that presently is not well understood in subtropical lakes but probably vital to lake managements. We conducted a mesocosm study involving benthic fish (Misgurnus anguillicaudatus), snails (Radix swinhoei) and submersed macrophyte (Vallisneria natans), aiming to examine whether benthic fish is detrimental to reestablishment of clear-water macrophyte-dominated state in eutrophic degraded lakes. In addition, we aimed to investigate the cascading effect that benthic fish might have on periphyton and phytoplankton and to what extent snails can alleviate this effect. Our results showed that benthic fish promoted nutrient release from the sediment and thereby facilitated the growth of phytoplankton and periphyton, leading to reduced growth of submerged macrophytes due to shading. Snails consumed the periphyton attached on the leaves of macrophytes, thereby being beneficial to the plant growth, albeit it could not fully counteract the adverse effects from benthic fish. The water quality indicators in terms of nutrients concentrations, phytoplankton biomass and light extinction coefficient along the water column was affected primarily by benthic fish, followed by macrophytes and snails. To target a clear-water condition, the water quality was best at the presence of macrophytes alone or in combination with snails, and worst at the presence of benthic fish. Our results implied that the removal of benthic fish should be a useful ecological restoration method for rehabilitation of submersed macrophytes and water quality improvement in subtropic, eutrophic, shallow lakes following external nutrient loading reduction.


Asunto(s)
Hydrocharitaceae , Lagos , Animales , Biomasa , Peces , Fósforo , Fitoplancton
5.
J Cancer Res Ther ; 18(7): 1937-1944, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36647953

RESUMEN

Objective: Reminiscence therapy (RT) is frequently used with elderly patients to improve their psychological status, but a few studies have examined its application in lung cancer patients. This study explored whether a reminiscence therapy-involved care program (RTICP) could improve cognitive functions, anxiety, depression, patient satisfaction, and survival in elderly lung cancer patients. Materials and Methods: This randomized, controlled study enrolled 138 elderly post-operative lung cancer patients into two groups, an RTICP group (n = 69) and a usual care program (UCP) group (n = 69), for a 12-month intervention period and a follow-up period. During the 12-month intervention, the Mini-Mental State Examination (MMSE) score, the Hospital Anxiety and Depression Scale for anxiety (HADS-A) and depression (HADS-D), patient satisfaction, disease-free survival (DFS), and overall survival (OS) were evaluated. Results: MMSE and patient satisfaction were elevated in the RTICP group compared to the UCP group at month (M) 12. Additionally, RTICP reduced HADS-A at M6, M9, and M12 and the anxiety rate at M9, HADS-D at M9, and M12 compared to UCP, whereas the depression rate was no different between the two groups at any time (all P > 0.050). Moreover, DFS and OS were no different between the two groups (all P > 0.050). Conclusion: RTICP, considered as an optional psychological intervention, enhances cognitive functions, alleviates anxiety and depression feelings, and elevates satisfaction among elderly lung cancer patients.


Asunto(s)
Neoplasias Pulmonares , Satisfacción del Paciente , Humanos , Anciano , Psicoterapia , Ansiedad/etiología , Ansiedad/terapia , Ansiedad/psicología , Neoplasias Pulmonares/terapia , Depresión/etiología , Depresión/terapia , Depresión/psicología
6.
Ecol Evol ; 11(14): 9827-9836, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306665

RESUMEN

Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high-density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long-term dynamic characteristics and functional information.

7.
Sci Total Environ ; 713: 136734, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32019051

RESUMEN

Benthivorous fish disturbance and snail herbivory are two important factors that determine the community structure of submersed macrophytes. We conducted an outdoor mesocosm experiment to examine the separate and combined effects of these two factors on water quality and the growth of two mixed-cultivation submersed macrophytes, Vallisneria natans and Hydrilla verticillata, with different growth forms. The experiment involved two levels of fish (Misgurnus anguillicaudatus) disturbance crossed with two levels of snail (Radix swinhoei) intensity. The results revealed that fish activity rather than snail activity significantly increased the overlying water concentrations of total suspended solids (TSS), total nitrogen (TN), ammonia nitrogen (N-NH4), total phosphorus (TP) and phosphate phosphorus (P-PO4). However, no differences among treatments were observed for chlorophyll a (chl a) concentrations. Fish disturbance or snail herbivory alone did not affect the relative growth rate (RGR) of H. verticillata, but their combined effects significantly decreased the RGR of H. verticillata. Although snail herbivory alone did not affect the RGR of V. natans, fish disturbance alone and the combined effects of these factors drastically reduced its RGR. Both species exhibited increased free amino acid (FAA) contents and decreased ramet numbers, soluble carbohydrate (SC) contents and starch contents in the presence of the fish. Moreover, compared to H. verticillata, V. natans showed exceedingly low ramet numbers and starch contents in the presence of the fish. H. verticillata had a higher RGR and summed dominance ratio (SDR2) than V. natans in all treatments; H. verticillata also displayed a larger competitive advantage in the presence of fish disturbance. The present study suggests that (1) fish disturbance rather than snail activity increases water nutrient concentrations, (2) low snail density may be harmful to submersed macrophyte growth when the plants are under other abiotic stress conditions and (3) the competitive advantage of H. verticillata over V. natans is more preponderant in a turbid environment.


Asunto(s)
Herbivoria , Calidad del Agua , Animales , Clorofila A , Hydrocharitaceae , Fósforo
8.
Sci Total Environ ; 704: 135269, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31796282

RESUMEN

Low underwater light availability and benthivorous fish-mediated disturbance are two important factors that influence the growth of submersed macrophytes. However, the combined effects of these factors remain unclear. To determine the combined effects of low light and fish-mediated disturbance on the growth of two submersed macrophytes with contrasting growth forms, i.e., Vallisneria natans and Hydrilla verticillata, we conducted an outdoor mesocosm experiment with a two-by-two factorial design. The experiment involved two fish-mediated disturbance levels (0 and 1 Misgurnus anguillicaudatus) crossed with two levels of light intensity (ambient light and a low-light environment created by culturing the macrophytes under a shelter). The results showed that the chlorophyll a (chl a) concentration in the overlying water showed no difference among treatments for each macrophyte species. The fish-mediated disturbance significantly decreased the relative growth rate (RGR) of both species in the low-light environment but showed no effects in the ambient light environment. Low light availability and/or fish-mediated disturbance led to increased plant heights of both species compared with the heights under the ambient light regime. Low light availability combined with fish-mediated disturbance significantly reduced the ramet number and soluble carbohydrate (SC) content of both species; however, the free amino acid (FAA) content was not affected. Compared to V. natans, H. verticillata exhibited a high RGR and high ramet numbers in a low-light environment combined with fish-mediated disturbance. Our results indicated that the adaptability of H. verticillata is better than that of V. natans in turbid, shallow and hydrostatic water. Fish-mediated disturbance can negatively influence submersed macrophyte recovery in lakes when light is not abundant.


Asunto(s)
Clorofila A/análisis , Peces/fisiología , Hydrocharitaceae/fisiología , Animales , Lagos , Nitrógeno , Fósforo , Luz Solar
9.
Front Plant Sci ; 10: 442, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031783

RESUMEN

Leaf soluble carbohydrates (SC), free amino acids (FAA), starch, total phenolics (TOPH), carbon (C), and nitrogen (N) stoichiometry of 24 aquatic macrophyte species were studied at 52 selected sites in eastern, 31 sites in southwestern and 6 sites in western China, including 12 submerged, 6 floating-leaved, 4 emergent and 2 free-floating macrophytes. The leaf stoichiometric characteristics differed significantly among the plant species of the four different life forms, the lowest C content occurring in submerged macrophytes and the highest N content in free-floating macrophytes. Overall, though the variance explained by the linear regression models was low, the C and N contents decreased toward the northern latitudes, the C content and the C:N ratios increased with increasing altitude. Multiple regressions revealed that the stoichiometric characteristics of submerged macrophytes varied significantly across the large spatial and climatic gradients and among the species studied. For floating-leaved and emergent macrophytes, no correlation between climate factors and SC, FAA, starch, TOPH, C, and N contents and C:N ratio was observed. For free-floating macrophytes, the TOPH content was markedly positively correlated with latitude and altitude. We conclude that the C and N contents related more closely to latitude, altitude or mean annual air temperature than did the C and N metabolic indicators for the submerged macrophytes, while the relationships with the metabolic indicators turned out to be insignificant for most species of the other life forms. The results helped us to identify species with significant physiological plasticity across geographic and climatic gradients in China, and such information is useful when conducting restoration of lost aquatic plants in different climate regions.

10.
Front Plant Sci ; 10: 169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842784

RESUMEN

Light is a major limiting resource in aquatic ecosystems and numerous studies have investigated the response of submerged macrophytes to low light conditions. However, few studies have tested whether different light response strategies can also have consequences for macrophyte distribution along different littoral slopes in lakes, which are known to affect macrophyte biomass due to differences in drag forces and sediment characteristic. In this study, we tested (1) whether two macrophyte species of different growth forms (canopy-forming: Potamogeton maackianus, rosette-type: Vallisneria natans) differ in their response strategies to low light conditions and (2) how these responses influence their distribution along different basin slopes in the mesotrophic Lake Erhai, China. We hypothesized that the canopy-forming species responds to low light conditions at deeper sites by stem elongation while the rosette-type species increases its shoot chlorophyll content. As a consequence, P. maackianus should have a higher susceptibility to drag forces and thus prevail at sites with lower slopes. Sites with higher slopes should offer a niche for rosette-type species like V. natans that can better withstand drag forces. We surveyed the distribution and abundance of the two macrophyte species at 527 sampling points along 97 transects in Lake Erhai and measured their height, leaf and stem/rhizome biomass, and leaf chlorophyll a content at different water depths. Our results confirmed stem elongation as a strategy to low light conditions by the canopy-forming species P. maackianus, while V. natans produced more chlorophyll a per shoot biomass at deeper sites to tolerate shading. As hypothesized, these alternative response strategies to low light conditions resulted in a trade-off regarding the plants ability to grow at different basin slopes. P. maackianus was dominant at sites with low-moderate slope (0-4%) and low-moderate water depth (2-4 m), while sites with high basin slope (4-7%) combined with moderate-high water depth (3-5 m) were dominantly colonized by V. natans. The latter habitat thus represents a potential refuge for rosette-type macrophyte species that are often outcompeted when shading increases during eutrophication.

11.
Environ Sci Pollut Res Int ; 25(34): 34027-34045, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30280343

RESUMEN

Few studies have focused on the biomechanical responses of submerged, rosette-forming macrophytes to wave action, water depth, or their co-occurrence in naturally eutrophic systems. The plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics of Vallisneria natans inhabiting a range of water depths were examined along three transects (T1, T2, and T3) in a eutrophic lake, Lake Erhai, in Yunnan Province, China. These transects were exposed to weak wave action and hyper-eutrophication (T1), moderate wave action and eutrophication (T2), or strong wave action and eutrophication (T3). The results showed that V. natans was mainly distributed at intermediate depths, with the widest colonization depth in T1. The values of plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics were generally highest in T3 and smallest in T2. Along the depth gradient, these values were generally highest at 3.5, 2.5, and 2.5 m for the plants growing in T1, T2, and T3, respectively. These findings suggest that V. natans adopts a "tolerance" strategy to cope with the effects of strong wave action in eutrophic habitats and an "avoidance" strategy when exposed to moderate wave action in eutrophic areas. Since the absence of an avoidance strategy increases the resistance to low-light stress at the expense of increased drag forces, there is a limit to the wave action that V. natans can withstand. This study indicates that biomechanics could be important when determining the distribution pattern of V. natans in Lake Erhai.


Asunto(s)
Hydrocharitaceae/fisiología , Lagos , Fenómenos Biomecánicos , China , Ecosistema , Eutrofización , Hydrocharitaceae/anatomía & histología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología
12.
Huan Jing Ke Xue ; 39(1): 219-226, 2018 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-29965685

RESUMEN

The anaerobic-anoxic-oxic (AAO) process was used to investigate the variation of the parameters of water quality when the dissolved oxygen (DO) in the aerobic tank was controlled at a low concentration. The results indicated the system still had good phosphorus and nitrogen removal efficiencies when the DO concentration in the aerobic tank was decreased from 2.00 mg·L-1 to 1.00 mg·L-1 and 0.50 mg·L-1, and the effluent indexes could meet the first class A standard for the "discharge standard of pollutants for municipal wastewater treatment plant" (GB18918-2002) of China. The activated sludge model of the AAO process was developed by BioWin 4.1 software. The sensitivities of the model parameters were analyzed, and the model parameters, such as amount of polyhydroxyalkanoate (PHA) stored per unit of acetate or the propionate sequestered by phosphorus accumulating bacteria (YP/PHA,seq), the amount of phosphorus stored per unit of PHA oxidized in aerobic conditions by phosphorus accumulating bacteria (YP/PHA,aerobic), the maximum specific growth rate of ammonia oxidizing bacteria (µmax,A), and the maximum specific growth rate of nitrite oxidizing bacteria (µmax,N), were calibrated and validated by the dynamic simulation. In addition, the energy consumption of the aeration was simulated and evaluated. The results showed that when the DO concentration in the aerobic tank was decreased from 2.00 mg·L-1 to 1.00 mg·L-1 and 0.50 mg·L-1, the air flow could be reduced by 23.8% and 38.1%, and the oxygen transfer efficiency could be increased by 7.2% and 11.7%, respectively.


Asunto(s)
Reactores Biológicos , Nitrógeno/aislamiento & purificación , Oxígeno/química , Fósforo/aislamiento & purificación , Eliminación de Residuos Líquidos , Bacterias/metabolismo , China , Aguas del Alcantarillado
13.
Sci Total Environ ; 625: 1433-1445, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29996440

RESUMEN

The geo-engineering approach of modified soil flocculation has been widely applied to mitigate algal blooms and eutrophication in relatively small lakes. Nevertheless, its potential ecological risks and feasibility should be examined and identified prior to its application in large natural lakes given the multiple functions of these water bodies in human health and welfare. In situ mesocosm experiments on modified soil flocculation were performed in Lake Taihu during summer 2010 and 2011. Chitosan-modified kaolinite (CMK) soil was used to flocculate algal blooms and improve water transparency to facilitate the re-establishment of the submersed macrophyte Vallisneria natans in this shallow eutrophic lake. Moreover, the ecological effects of CMK soil were assessed. Results showed that repeated additions of CMK (0.3g/L for each time) improved water quality in terms of Chl-a, TN, and TP concentrations; TN/TP ratio; turbidity; redox conditions; and nitrification and denitrification activities. These effects lasted for 48days. After the fourth dose of CMK, the biomass of all phytoplankton categories, except for that of Cryptophyta, decreased by >90% (ca. 1-2×106cell/L or 0.38-0.55mg/L of wet weight). Zooplankton biomass markedly decreased after the first CMK addition, and copepods became dominant. These effects, however, did not last for the long term. Most importantly, submersed V. natans was restored successfully when water clarity and quality were improved through repeated CMK flocculation. Nevertheless, the indices of carbohydrate depletion and free amino acid accumulation indicated that the plant experienced physiological stresses. The reestablishment of V. natans reinforced the positive effects of repeated CMK dosing on water quality, and promoted a clear water state. V. natans is recommended for vegetative restoration in shallow eutrophic lakes given its facile transplantation, high stress tolerance, and physiological traits, which can be applied as indices of post-flocculation effects. In summary, the combination of repeated CMK dosing and revegetation of V. natans can feasibly improve water quality and initiate the restoration of a clear water state in shallow eutrophic lakes.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Floculación , Lagos/química , Plantas , Suelo/química , Contaminantes del Agua/análisis , Biomasa , China , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton
14.
Sci Total Environ ; 622-623: 421-435, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220767

RESUMEN

Eutrophication and hydrodynamics determine the final distribution patterns of aquatic macrophytes; however, there is limited available knowledge regarding their interactive effects. Morphological and biomechanical responses to eutrophication and hydrodynamic stresses were assessed by sampling five abundant and dominant species, Potamogeton maackianus, P. pectinatus, P. lucens, Ceratophyllum demersum and Myriophyllum spicatum, in three macrophyte beds in Lake Erhai, Yunnan Province, China: one exposed to eutrophication and moderate southeast (SE) wind; one with mesotrophication, but sheltered by the lakeshore, with weak wind disturbance; and one with meso-eutrophication and strong SE wind. The results showed significant interactive effects of eutrophication and hydrodynamics on most biomechanical traits and some morphological traits, suggesting that aquatic macrophytes preferentially undergo biomechanical adjustments to resist the coexisting eutrophication and hydrodynamic stresses. In particular, hydrodynamics increased both the tensile force and tensile strain of P. maackianus under meso-eutrophication and dramatically decreased them in eutrophic areas, suggesting that eutrophication triggers mechanical failure in this species. Additionally, P. pectinatus, C. demersum and M. spicatum showed the lowest and highest values for the biomechanical variables (greater values for M. spicatum) in the most eutrophic and hydrodynamic areas, respectively, implying that increases in hydrodynamics primarily induce mechanical damage in eutrophic species. The plants generally exhibited greater tensile strain in both shallow and deep waters and the greatest tensile force at moderate depths. The stem cross-sectional area, plant height, stem length, internode length, and branch traits were all responsible for determining the biomechanical variables. This study reveals that hydrodynamic changes primarily induce mechanical damage in eutrophic species, whereas eutrophication triggers mechanical damage in sensitive species.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Hidrodinámica , Potamogetonaceae/fisiología , Tracheophyta/fisiología , China , Lagos
15.
Sci Rep ; 7(1): 8294, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811648

RESUMEN

Ecological processes are generally scale-dependent and there is little consensus about the relative importance of deterministic versus stochastic processes in driving patterns of biological diversity. We investigated how the relationship between functional dispersion and environmental gradients changes with spatial scale in subtropical freshwater lakes. The functional alpha and beta dispersions of all the tested traits were significantly under-dispersed across spatial scales and along environmental gradients. Results showed more functional similarity within communities in leaf dry mass content and flowering duration but less functional turnover among communities in all the tested traits at regional scales (Yunnan-Guizhou plateau and the middle and low reaches of the Yangtze River). The strengths and directions of environmental effects on the functional alpha and beta dispersions depended on the selected traits, diversity metrics and spatial scales. Surprisingly, broad-scale factors - elevation and water transparency - decreased the functional turnover for most traits along the gradients, whereas fine-scale factors - water depth - produced the opposite patterns along the gradient, depending on the trait selected. Our study highlights the dominant role of deterministic assembly processes in structuring the local functional composition and governing the spatial functional turnover of macrophyte communities across multiple spatial scales.


Asunto(s)
Biodiversidad , Clima , Ecosistema , Agua Dulce/microbiología , Lagos/microbiología , Ambiente , Análisis Espacial
16.
Environ Sci Pollut Res Int ; 24(9): 8108-8119, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28144862

RESUMEN

The present study was carried out to determine the efficacy of root foraging and the physiological response of Vallisnaria natans grown in heterogeneous sediments. V. natans was cultivated in two homogeneous and two heterogeneous sediments. The results suggested that V. natans grown in heterogeneous sediments presented a significantly higher root proportion in its total biomass, exhibited root foraging, and grew well, as indicated by a total biomass, ramet number, and plant height very close to those of plants grown in nutrient-rich clay sediment. Moreover, the more sensitive physiological response of the roots than the stems or the leaves to sediment nutrients suggested that root foraging occurred, and the approached values between the two heterogeneous sediments and the homogeneous clay sediment indicated that V. natans could satisfy its nutrient requirements via root foraging. The results may be useful in the recovery of macrophytes that remodel part (rather than all) of the substrate and can potentially improve habitats that are unsuitable for plant growth.


Asunto(s)
Hydrocharitaceae/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Biomasa , Sedimentos Geológicos , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo
17.
Sci Rep ; 6: 34028, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694880

RESUMEN

To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (Ek) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.

18.
Environ Sci Pollut Res Int ; 23(22): 22577-22585, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27557960

RESUMEN

Carbon (C), nitrogen (N) and phosphorus (P) are the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb nutrients from sediments by root uptake. However, the C:N:P stoichiometric signatures of plant tissue are affected by many additional factors such as taxonomy, nutrient availability, and light availability. We first revealed the relative importance of taxonomy, sediment, and water column on plant C:N:P stoichiometry using variance partitioning based on partial redundancy analyses. Results showed that taxonomy was the most important factor in determining C:N:P stoichiometry, then the water column and finally the sediment. In this study, a significant positive relationship was found between community C concentration and macrophyte community biomass, indicating that the local low C availability in macrophytes probably was the main reason why submerged macrophytes declined in Yangtze floodplain shallow lakes. Based on our study, it is suggested that submerged macrophytes in Yangtze floodplain shallow lakes are primarily limited by low light levels rather than nutrient availability.


Asunto(s)
Carbono/química , Sedimentos Geológicos/química , Nitrógeno/química , Fósforo/química , Plantas/química , Biomasa , China , Lagos , Plantas/clasificación
19.
PLoS One ; 10(7): e0131630, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167856

RESUMEN

Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology.


Asunto(s)
Ecosistema , Entropía , Lagos , Modelos Teóricos , Plantas/metabolismo , China , Especificidad de la Especie
20.
Ecol Evol ; 4(9): 1516-23, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24967072

RESUMEN

Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step-wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple-trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community-weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits-productivity relationships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...