Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 16(1): 43, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758969

RESUMEN

Genomic selection is a worthy breeding method to improve genetic gain in recurrent selection breeding schemes. The integration of multi-generation and multi-location information could significantly improve genomic prediction models in the context of shuttle breeding. The Cirad-CIAT upland rice breeding program applies recurrent genomic selection and seeks to optimize the scheme to increase genetic gain while reducing phenotyping efforts. We used a synthetic population (PCT27) of which S0 plants were all genotyped and advanced by selfing and bulk seed harvest to the S0:2, S0:3, and S0:4 generations. The PCT27 was then divided into two sets. The S0:2 and S0:3 progenies for PCT27A and the S0:4 progenies for PCT27B were phenotyped in two locations: Santa Rosa the target selection location, within the upland rice growing area, and Palmira, the surrogate location, far from the upland rice growing area but easier for experimentation. While the calibration used either one of the two sets phenotyped in one or two locations, the validation population was only the PCT27B phenotyped in Santa Rosa. Five scenarios of genomic prediction and 24 models were performed and compared. Training the prediction model with the PCT27B phenotyped in Santa Rosa resulted in predictive abilities ranging from 0.19 for grain zinc concentration to 0.30 for grain yield. Expanding the training set with the inclusion of the PCT27A resulted in greater predictive abilities for all traits but grain yield, with increases from 5% for plant height to 61% for grain zinc concentration. Models with the PCT27B phenotyped in two locations resulted in higher prediction accuracy when the models assumed no genotype-by-environment (G × E) interaction for flowering (0.38) and grain zinc concentration (0.27). For plant height, the model assuming a single G × E variance provided higher accuracy (0.28). The gain in predictive ability for grain yield was the greatest (0.25) when environment-specific variance deviation effect for G × E was considered. While the best scenario was specific to each trait, the results indicated that the gain in predictive ability provided by the multi-location and multi-generation calibration was low. Yet, this approach could lead to increased selection intensity, acceleration of the breeding cycle, and a sizable economic advantage for the program.

2.
PLoS One ; 18(9): e0291833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37756295

RESUMEN

Improving plant performance in salinity-prone conditions is a significant challenge in breeding programs. Genomic selection is currently integrated into many plant breeding programs as a tool for increasing selection intensity and precision for complex traits and for reducing breeding cycle length. A rice reference panel (RP) of 241 Oryza sativa L. japonica accessions genotyped with 20,255 SNPs grown in control and mild salinity stress conditions was evaluated at the vegetative stage for eight morphological traits and ion mass fractions (Na and K). Weak to strong genotype-by-condition interactions were found for the traits considered. Cross-validation showed that the predictive ability of genomic prediction methods ranged from 0.25 to 0.64 for multi-environment models with morphological traits and from 0.05 to 0.40 for indices of stress response and ion mass fractions. The performances of a breeding population (BP) comprising 393 japonica accessions were predicted with models trained on the RP. For validation of the predictive performances of the models, a subset of 41 accessions was selected from the BP and phenotyped under the same experimental conditions as the RP. The predictive abilities estimated on this subset ranged from 0.00 to 0.66 for the multi-environment models, depending on the traits, and were strongly correlated with the predictive abilities on cross-validation in the RP in salt condition (r = 0.69). We show here that genomic selection is efficient for predicting the salt stress tolerance of breeding lines. Genomic selection could improve the efficiency of rice breeding strategies for salinity-prone environments.


Asunto(s)
Oryza , Oryza/genética , Tolerancia a la Sal/genética , Fitomejoramiento , Genómica , Genotipo
3.
Heredity (Edinb) ; 131(3): 201-210, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37407693

RESUMEN

One of the main challenges of breeding programs is to identify superior genotypes from a large number of candidates. By gradually increasing the frequency of favorable alleles in the breeding population, recurrent selection improves the population mean for target traits, increasing the chance to identify promising genotypes. In rice, population improvement through recurrent selection has been used very little to date, except in Latin America. At Embrapa (Brazilian Agricultural Research Corporation), the upland rice breeding program is conducted in two phases: population improvement followed by product development. In this study, the CNA6 population, evaluated over five cycles (3 to 7) of selection, including 20 field trials, was used to assess the realized genetic gain. A high rate of genetic gain was observed for grain yield, at 215 kg.ha-1 per cycle or 67.8 kg.ha-1 per year (3.08%). The CNA6 population outperformed the controls only for the last cycle, with a yield difference of 1128 kg.ha-1. An analysis of the product development pipeline, based on 29 advanced yield trials with lines derived from cycles 3 to 6, showed that lines derived from the CNA6 population had high grain yield, but did not outperform the controls. These results demonstrate that the application of recurrent selection to a breeding population with sufficient genetic variability can result in significant genetic gains for quantitative traits, such as grain yield. The integration of this strategy into a two-phase breeding program also makes it possible to increase quantitative traits while selecting for other traits of interest.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento/métodos , Fenotipo , Genotipo , Grano Comestible/genética , Selección Genética
4.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34498036

RESUMEN

Population breeding through recurrent selection is based on the repetition of evaluation and recombination among best-selected individuals. In this type of breeding strategy, early evaluation of selection candidates combined with genomic prediction could substantially shorten the breeding cycle length, thus increasing the rate of genetic gain. The objective of this study was to optimize early genomic prediction in an upland rice (Oryza sativa L.) synthetic population improved through recurrent selection via shuttle breeding in two sites. To this end, we used genomic prediction on 334 S0 genotypes evaluated with early generation progeny testing (S0:2 and S0:3) across two sites. Four traits were measured (plant height, days to flowering, grain yield, and grain zinc concentration) and the predictive ability was assessed for the target site. For days to flowering and plant height, which correlate well among sites (0.51-0.62), an increase of up to 0.4 in predictive ability was observed when the model was trained using the two sites. For grain zinc concentration, adding the phenotype of the predicted lines in the nontarget site to the model improved the predictive ability (0.51 with two-site and 0.31 with single-site model), whereas for grain yield the gain was less (0.42 with two-site and 0.35 with single-site calibration). Through these results, we found a good opportunity to optimize the genomic recurrent selection scheme and maximize the use of resources by performing early progeny testing in two sites for traits with best expression and/or relevance in each specific environment.


Asunto(s)
Oryza , Genoma de Planta , Genómica , Genotipo , Humanos , Oryza/genética , Fenotipo , Fitomejoramiento , Selección Genética
5.
ACS Appl Bio Mater ; 4(8): 6268-6279, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006911

RESUMEN

Biomimetic catechol-functionalized hydrogels have attracted substantial attention due to their potential in a variety of biomedical applications, such as tissue repair and regeneration, drug delivery, and antimicrobial and antifouling applications. In this study, a one-pot strategy for fabrication of functional catecholic hydrogels using dopamine as a photoinitiator was developed. Under UV irradiation in an acidic solution, dopamine generates free radicals, likely semiquinone radicals, to trigger the addition polymerization, following pseudo-first-order kinetics. The dopamine-initiated photopolymerization provides a straightforward and facile approach and, in addition, prevents the undesirable oxidation to catecholic groups. Superhydrophilic sulfobetaine methacrylate (SBMA) was applied for developing biocompatible hydrogels. 1H nuclear magnetic resonance, UV-vis spectroscopy, gel permeation chromatography, and rheological studies were conducted to explore the polymerization mechanism and optimal experimental conditions in terms of pH, UV doses, and the concentration of dopamine. The unique properties of the resultant catechol-functionalized pSBMA hydrogels were demonstrated by enhanced mechanical properties through metal-catechol complexation, self-healing and injectable capability, high adhesiveness, and fouling resistance. Consequently, the synthetic strategy to design catecholic hydrogels can leverage the use of dopamine in a variety of applications.


Asunto(s)
Dopamina , Hidrogeles , Catecoles/química , Dopamina/química , Hidrogeles/química , Cicatrización de Heridas
6.
G3 (Bethesda) ; 8(7): 2319-2332, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29743189

RESUMEN

Developing rice varieties adapted to alternate wetting and drying water management is crucial for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods that account for genotype by environment interactions. Two breeding populations (a reference panel of 284 accessions and a progeny population of 97 advanced lines) were evaluated under alternate wetting and drying and continuous flooding management systems. The predictive ability of genomic prediction for response variables (index of relative performance and the slope of the joint regression) and for multi-environment genomic prediction models were compared. For the three traits considered (days to flowering, panicle weight and nitrogen-balance index), significant genotype by environment interactions were observed in both populations. In cross validation, predictive ability for the index was on average lower (0.31) than that of the slope of the joint regression (0.64) whatever the trait considered. Similar results were found for progeny validation. Both cross-validation and progeny validation experiments showed that the performance of multi-environment models predicting unobserved phenotypes of untested entrees was similar to the performance of single environment models with differences in predictive ability ranging from -6-4% depending on the trait and on the statistical model concerned. The predictive ability of multi-environment models predicting unobserved phenotypes of entrees evaluated under both water management systems outperformed single environment models by an average of 30%. Practical implications for breeding rice for adaptation to alternate wetting and drying system are discussed.


Asunto(s)
Adaptación Biológica , Cruzamiento , Interacción Gen-Ambiente , Genoma de Planta , Genómica , Genotipo , Oryza/genética , Fenotipo , Algoritmos , Genética de Población/métodos , Estudio de Asociación del Genoma Completo , Genómica/métodos , Modelos Genéticos , Modelos Estadísticos , Reproducibilidad de los Resultados , Selección Genética
7.
Front Genet ; 7: 145, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27555865

RESUMEN

One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

9.
BMC Bioinformatics ; 16: 404, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26634451

RESUMEN

BACKGROUND: Numerous simulation tools based on specific assumptions have been proposed to simulate populations. Here we present a simulation tool named DHOEM (densification of haplotypes by loess regression and maximum likelihood) which is free from population assumptions and simulates new markers in real SNP marker data. The main objective of DHOEM is to generate a new population, which incorporates real and simulated SNP by statistical learning from an initial population, which match the realized features of the latter. RESULTS: To demonstrate DHOEM's abilities, we used a sample of 704 haplotypes for 12 chromosomes with 8336 SNP from a synthetic population, used for breeding upland rice in Latin America. The distributions of allele frequencies, pairwise SNP LD coefficients and data structures, before and after marker densification of the associated marker data set, were shown to be in relatively good agreement at moderate degrees of marker densification. DHOEM is a user-friendly tool that allows the user to specify the level of marker density desired, with a user defined minor allele frequency (MAF) limit, which is produced in a reasonable computation time. CONCLUSIONS: DHOEM is a user-friendly and useful tool for simulation and methodological studies in quantitative genetics and breeding.


Asunto(s)
Frecuencia de los Genes/genética , Polimorfismo de Nucleótido Simple/genética , Programas Informáticos/estadística & datos numéricos , Simulación por Computador , Haplotipos
10.
PLoS One ; 10(8): e0136594, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26313446

RESUMEN

Genomic selection (GS) is a promising strategy for enhancing genetic gain. We investigated the accuracy of genomic estimated breeding values (GEBV) in four inter-related synthetic populations that underwent several cycles of recurrent selection in an upland rice-breeding program. A total of 343 S2:4 lines extracted from those populations were phenotyped for flowering time, plant height, grain yield and panicle weight, and genotyped with an average density of one marker per 44.8 kb. The relative effect of the linkage disequilibrium (LD) and minor allele frequency (MAF) thresholds for selecting markers, the relative size of the training population (TP) and of the validation population (VP), the selected trait and the genomic prediction models (frequentist and Bayesian) on the accuracy of GEBVs was investigated in 540 cross validation experiments with 100 replicates. The effect of kinship between the training and validation populations was tested in an additional set of 840 cross validation experiments with a single genomic prediction model. LD was high (average r2 = 0.59 at 25 kb) and decreased slowly, distribution of allele frequencies at individual loci was markedly skewed toward unbalanced frequencies (MAF average value 15.2% and median 9.6%), and differentiation between the four synthetic populations was low (FST ≤0.06). The accuracy of GEBV across all cross validation experiments ranged from 0.12 to 0.54 with an average of 0.30. Significant differences in accuracy were observed among the different levels of each factor investigated. Phenotypic traits had the biggest effect, and the size of the incidence matrix had the smallest. Significant first degree interaction was observed for GEBV accuracy between traits and all the other factors studied, and between prediction models and LD, MAF and composition of the TP. The potential of GS to accelerate genetic gain and breeding options to increase the accuracy of predictions are discussed.


Asunto(s)
Genoma de Planta , Desequilibrio de Ligamiento , Modelos Genéticos , Oryza/genética , Fitomejoramiento/métodos , Selección Genética , Alelos , Frecuencia de los Genes/genética , Genotipo , Oryza/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...