Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mucosal Immunol ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492744

RESUMEN

Interleukin-(IL) 22 production by intestinal group 3 innate lymphoid cells (ILC3) is critical to maintain gut homeostasis. However, IL-22 needs to be tightly controlled; reduced IL-22 expression is associated with intestinal epithelial barrier defect while its overexpression promotes tumor development. Here, using a single-cell ribonucleic acid sequencing approach, we identified a core set of genes associated with increased IL-22 production by ILC3. Among these genes, programmed cell death 1 (PD-1), extensively studied in the context of cancer and chronic infection, was constitutively expressed on a subset of ILC3. These cells, found in the crypt of the small intestine and colon, displayed superior capacity to produce IL-22. PD-1 expression on ILC3 was dependent on the microbiota and was induced during inflammation in response to IL-23 but, conversely, was reduced in the presence of Notch ligand. PD-1+ ILC3 exhibited distinct metabolic activity with increased glycolytic, lipid, and polyamine synthesis associated with augmented proliferation compared with their PD-1- counterparts. Further, PD-1+ ILC3 showed increased expression of mitochondrial antioxidant proteins which enable the cells to maintain their levels of reactive oxygen species. Loss of PD-1 signaling in ILC3 led to reduced IL-22 production in a cell-intrinsic manner. During inflammation, PD-1 expression was increased on natural cytotoxicity receptor (NCR)- ILC3 while deficiency in PD-1 expression resulted in increased susceptibility to experimental colitis and failure to maintain gut barrier integrity. Collectively, our findings uncover a new function of the PD-1 and highlight the role of PD-1 signaling in the maintenance of gut homeostasis mediated by ILC3 in mice.

2.
Nat Immunol ; 25(2): 330-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172260

RESUMEN

Antibody-secreting plasma cells (PCs) are generated in secondary lymphoid organs but are reported to reside in an emerging range of anatomical sites. Analysis of the transcriptome of different tissue-resident (Tr)PC populations revealed that they each have their own transcriptional signature indicative of functional adaptation to the host tissue environment. In contrast to expectation, all TrPCs were extremely long-lived, regardless of their organ of residence, with longevity influenced by intrinsic factors like the immunoglobulin isotype. Analysis at single-cell resolution revealed that the bone marrow is unique in housing a compendium of PCs generated all over the body that retain aspects of the transcriptional program indicative of their tissue of origin. This study reveals that extreme longevity is an intrinsic property of TrPCs whose transcriptome is imprinted by signals received both at the site of induction and within the tissue of residence.


Asunto(s)
Médula Ósea , Células Plasmáticas , Células de la Médula Ósea
3.
Sci Immunol ; 6(63): eabf7268, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533976

RESUMEN

Dendritic cells (DCs) and macrophages are at the forefront of immune responses, modifying their transcriptional programs in response to their tissue environment or immunological challenge. Posttranslational modifications of histones, such as histone H3 lysine-27 trimethylation (H3K27me3) by the Polycomb repressive complex 2 (PRC2), are tightly associated with epigenetic regulation of gene expression. To explore whether H3K27me3 is involved in either the establishment or function of the mononuclear phagocyte system, we selectively deleted core components of PRC2, either EZH2 or SUZ12, in CD11c-expressing myeloid cells. Unexpectedly, EZH2 deficiency neither prevented the deposition and maintenance of H3K27me3 in DCs nor hindered DC/macrophage homeostasis. In contrast, SUZ12 deficiency markedly impaired the capacity of DCs and macrophages to maintain H3K27me3. SUZ12 ablation induced a rapid loss of the alveolar macrophage and Langerhans cell networks under both steady state and inflammatory conditions because these cells could no longer proliferate to facilitate their self-renewal. Despite the reduced H3K27me3, DC development and function were unaffected by SUZ12 ablation, suggesting that PRC2-mediated gene repression was dispensable for DC homeostasis. Thus, the role of SUZ12 highlights the fundamentally different homeostatic mechanisms used by tissue-resident myeloid cells versus DCs.


Asunto(s)
Células Dendríticas/inmunología , Homeostasis/inmunología , Células Mieloides/inmunología , Complejo Represivo Polycomb 2/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Complejo Represivo Polycomb 2/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...