Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(18): 7336-7343, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37129510

RESUMEN

Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.


Asunto(s)
Técnicas Biosensibles , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Biomarcadores de Tumor/análisis , Límite de Detección , Inmunoensayo , Oro/química
2.
Placenta ; 118: 1-9, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34972066

RESUMEN

INTRODUCTION: Fetal growth and development depend on metabolic energy from placental mitochondria. However, the impact of placental mitochondria on the occurrence of macrosomia remains unclear. We aimed to explore the association between macrosomia without gestational diabetes mellitus (non-GDM) and changes in placental mitochondrial DNA (mtDNA) copy number and methylation. METHODS: Fifty-four newborns with macrosomia and 54 normal birthweight controls were enrolled in this study. Placental mtDNA copy number and mRNA expression of nuclear genes related to mitochondrial replication or ATP synthesis-related genes were measured by real-time quantitative polymerase chain reaction (qPCR). Methylation levels of the non-coding regulatory region D-loop and ATP synthesis-related genes were detected by targeted bisulfite sequencing. RESULTS: Newborns with macrosomia had lower placental mtDNA copy number and higher methylation rates of the CpG15 site in the D-loop region (D-CpG15) and CpG6 site in the cytochrome C oxidase III (COX3) gene (COX3-CpG6) than normal birth weight newborns. After adjusting for potential covariates (gestational age, prepregnancy BMI, and infant sex), decreased placental mtDNA copy number (adjusted odds ratio [aOR] = 2.09, 95% confidence interval [CI] 1.03-4.25), elevated methylation rate of D-CpG15 (aOR = 2.06, 95% CI 1.03-4.09) and COX3-CpG6 (aOR = 2.13, 95% CI 1.08-4.20) remained significantly associated with a higher risk of macrosomia. DISCUSSION: Reduced mtDNA copy number and increased methylation levels of specific loci at mtDNA would increase the risk of macrosomia. However, the detailed molecular mechanism needs further identification.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , ADN Mitocondrial , Macrosomía Fetal/genética , Placenta/química , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...