Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 203: 116415, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723552

RESUMEN

This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography-mass spectrometry (LC-MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30-8.03, and 1.76-80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.

2.
ACS Appl Bio Mater ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382060

RESUMEN

Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.

3.
Mar Pollut Bull ; 195: 115460, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660661

RESUMEN

This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.


Asunto(s)
Cadmio , Metales Pesados , Adulto , Niño , Humanos , Animales , Cobayas , Cadmio/análisis , Ríos/química , Pakistán , Plomo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Medición de Riesgo , Peces
4.
J Environ Sci (China) ; 126: 17-28, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503746

RESUMEN

The Yellow River Basin (YRB) plays a very important role in China's economic and social development and ecological security. In particular, the ecosystem of the YRB is sensitive to climate change. However, the change of nutrient fluxes in this region during the past years and its main driving forces remain unclear. In this study, a hydrologic model R System for Spatially Referenced Regressions on Watershed Attributes (RSPARROW) was employed to simulate the spatio-temporal variations in the fluxes of total nitrogen (TN) and total phosphorus (TP) during the period of 2006-2017. The results suggested that the TN and TP loads increased by 138% and 38% during 2006-2014, respectively, and decreased by 66% and 71% from 2015 to 2017, respectively. During the period of 2006-2017, the annual mean fluxes of TN and TP in the YRB were in the range of 3.9 to 591.6 kg/km2/year and 1.7 to 12.0 kg/km2/year, respectively. TN flux was low in the upstream area of the Yellow River, and presented a high level in the middle and lower reaches. However, the flux of TP in Gansu and Ningxia section was slightly higher than that in the lower reaches of the Yellow River. Precipitation and point source are the key drivers for the inter-annual changes of TN loads in most regions of the YRB. While the inter-annual variations of TP loads in the whole basin are mainly driven by the point source. This study demonstrates the important impacts of climate change on nutrient loads in the YRB. Moreover, management measures should be taken to reduce pollution sources and thus provide solid basis for control of nitrogen and phosphorus in the YRB.


Asunto(s)
Nitrógeno , Fósforo , Ecosistema , Ríos , Hidrología
5.
Chemosphere ; 310: 136827, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36241105

RESUMEN

Increases in nutrient loadings to waterways over the past four decades have led to widespread eutrophication and water quality impairments across China. Understanding the spatial, interannual and long-term variations in nutrient loadings and associated drivers at the national scale is crucial for developing effective nutrient reduction strategies. However, the controls on, and spatiotemporal variations in, nutrient fluxes remain a problem from both an academic and management perspective. This study provides spatially extensive and temporally contiguous estimates of changes in riverine total nitrogen (TN), ammonia nitrogen (NH3-N) and total phosphorus (TP) fluxes for continental area of China based on machine learning stack models and empirical modeling over the period from 1980 to 2018. Results reveal considerable spatial, interannual and long-term variability in annual TN, NH3-N and TP fluxes, with spatial variations in average TN and NH3-N fluxes primarily driven by net anthropogenic nitrogen inputs. Interannual variability is dominated by precipitation across continental areas of China. Spatial variability in the estimated average annual TP flux in the undeveloped western and the developed middle east regions of China are primarily controlled by net anthropogenic phosphorus inputs and precipitation, respectively. We found that TN, NH3-N and TP fluxes increased from 1980 to 2018 in watersheds in East China; the national mean annual TN, NH3-N and TP fluxes increased before 2015 and decreased after 2015. This study illustrates the important role of precipitation and temperature variability in controlling the spatial, interannual and long-term variability of nutrient fluxes, and indicates that the influence of the meteorological conditions on annual loadings is needed when designing watershed nutrient reduction or management strategies.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Calidad del Agua , Eutrofización , Amoníaco , China , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
6.
Environ Geochem Health ; 45(2): 343-357, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35380377

RESUMEN

With the intensive urbanization and industrialization in recent years, lots of products containing heavy metals (HMs) have brought in severe environment problems. Yuqiao Reservoir (YQR) is an important drinking water source area in Tianjin of China, and the soil environmental quality of YQR is vital for human health. The goal of this study was to identify the priority control pollutants and hotspots of HMs contamination of YQR catchment. Thus, an integrated field investigation was conducted to analyze the major elements such as As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in soils around YQR. Geoaccumulation index (Igeo), enrichment factor (EF) and potential ecological risk index (PERI) were employed to assess the contamination status of HMs. The average contents of these elements were given as follows: As 7.97 mg/kg, Cd 0.31 mg/kg, Cr 86.1 mg/kg, Cu 24.7 mg/kg, Hg 0.044 mg/kg, Ni 30.7 mg/kg, Pb 27.3 mg/kg and Zn 76.7 mg/kg. According to geoaccumulation index (Igeo) and enrichment factor (EF) values, Cd, Cr, Pb and As showed a prominent enrichment. The result of multivariate statistics showed that Cd, Cr, Cu, As, Ni, Pb and Zn concentrations were mainly affected by human activities, whereas Hg was mainly from natural release. The anthropogenic activities were the major sources with a contribution of 91.46%, while natural origins only contributed 8.54%. And agricultural fertilization, mining and traffic activities are the most probable sources of these heavy metals in the soil. The PERI values indicated that 65.7% of total HMs were at low risk, 22.5% in moderate risk and 11.8% in considerable risk. To ensure soil environmental quality and human health, cadmium should be listed as a priority control pollutant. Spatial maps of HMs and their integrated PERI provided clear hotspots that indicated lower risk in the region close to YQR but higher risk in the region far from YQR.


Asunto(s)
Agua Potable , Contaminantes Ambientales , Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Agua Potable/análisis , Monitoreo del Ambiente , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Medición de Riesgo , Mercurio/análisis , Contaminantes Ambientales/análisis , China
7.
Chemosphere ; 303(Pt 2): 135176, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654238

RESUMEN

The occurrences of pharmaceutical and personal care products (PPCPs) in both freshwater and sea have been widely reported. However, pollution control requires further information on riverine discharges with influence of land-based activities and associated risks to estuarine ecosystems. This study investigated the spatial occurrences and the relationship to sociodemographic parameters of 30 PPCPs in 67 rivers along the Bohai coastal region. The results showed that PPCPs were mainly deposited in aquatic phase, and the partitioning coefficient between water and sediment was highly determined by chemical properties. The levels of 30 PPCPs in rivers ranged from 8.33 to 894.48 ng/L, showing a large variance among regions. Caffeine, sulfamethoxazole, sulfamethazine, ofloxacin, anhydro-erythromycin, and trimethoprim were found to be the major pollutants. Multivariable analysis method was used to assess the correlation of PPCPs markers to socio-economic parameters. The results indicated that domestic emissions contributed most to the occurrences of PPCPs in the riverine water. Risk assessment result indicated that sulfamethoxazole, caffeine, tetracycline, and carbamazepine ranked top four with the highest risks to the most sensitive aquatic organisms. The results identified caffeine and carbamazepine with high detection frequency and concentration as the priority chemicals, while sulfamethoxazole and erythromycin should also be concerned due to their potential threats in specific rivers. This study provides valuable information for pollution control over PPCPs riverine discharges in estuarine regions.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Cafeína/análisis , Carbamazepina/análisis , China , Cosméticos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Eritromicina , Preparaciones Farmacéuticas , Medición de Riesgo , Ríos/química , Sulfametoxazol , Agua/análisis , Contaminantes Químicos del Agua/análisis
8.
Environ Res ; 211: 113113, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35283080

RESUMEN

Perfluoroalkyl acids (PFAAs) are of global interest due to their persistence in the aquatic environment. This study assessed the occurrence of PFAAs in the Indus Drainage System and discerned their potential sources and environmental risks for the first time in Pakistan. 13 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkyl sulfonates (PFSAs) were analyzed to verify the dominant prevalence of short-chain PFAAs in the environment since the phase-out of long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). A significant variation (p ≤ 0.05) of individual PFAAs between the monitoring sites was confirmed by data normality tests Kolmogorov-Smirnov and Shapiro-Wilk, suggesting that different locations contribute differently to individual PFAAs concentrations. ΣPFAAs concentrations in riverine water and sediments ranged from 2.28 to 221.75 ng/L and 0.78-29.19 ng/g dw, respectively. PFBA, PFPeA, and PFHxA were the most abundant PFAAs, and on average accounted for 14.64, 13.75, and 12.97 ng/L of ∑PFAAs in riverine water and 0.34, 0.64, and 0.79 ng/g dw of ∑PFAAs in sediments. ΣPFAAs mean contamination in the drainage was significantly (p < 0.05) high in River Chenab followed by River Indus > Soan > Ravi > Kabul > Swat with more prevalence of short-chain (C4-C7) PFCAs followed by PFOA, PFBS, PFOS, PFNA, PFDA, PFHxS, PFUnDA, and PFDoDA. The correlation analysis determined the PFAAs' fate and distribution along the drainage, indicating that PFAAs with carbon chains C4-C12, except for PFSAs with carbon chains C6-C8, were most likely contaminated by the same source, the values of Kd and Koc increased linearly with the length of the perfluoroalkyl carbon chain, better understand the transport and partitioning of individual PFAAs between riverine water and sediments, where the HCA and PCA discerned industrial/municipal wastewater discharge, agricultural and surface runoff from nearby fields, and urban localities as potential sources of PFAAs contamination. The collective mass flux of short-chain (C4-C7) PFCAs was 5x higher than that of PFOS + PFOA, suggesting a continuous shift in the production and usage of fluorinated replacements for long-chain PFAAs with short-chain homologs. In terms of risk, individual PFAAs pollution in the drainage was within the world's risk thresholds for human health, with the exception of PFBA, PFPeA, PFHpA, PFHxA, PFOA, PFNA, and PFBS, whereas for ecology, the concentrations of individual PFAAs did not exceed the ecological risk thresholds of the United States of America, Canada, European Union (EU), Italy, Australia, and New Zealand, with the exception of PFSAs, whose detected individual concentrations were significantly higher than the EU, Australian and New Zealander PFSAs guidelines of 0.002 µg/L, 0.00047 µg/L, 0.00065 µg/L, 0.00013 µg/L, and 0.00023 µg/L, respectively, which may pose chronic risks to the regional ecosystem and population.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Australia , Carbono/análisis , China , Ecosistema , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Agua/análisis , Contaminantes Químicos del Agua/análisis
9.
Environ Pollut ; 301: 119001, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176410

RESUMEN

Estuarine rivers are the primary medium for transporting pollutants from human activities to the ocean. Polycyclic aromatic hydrocarbons (PAHs) have substantial toxicity and pose a significant risk to ecosystem and human health. However, the influences of urbanization on their distribution, particularly in China where urbanization is occurring rapidly, remain unclear. This study took three coastal economic circles of China as research areas, and investigated PAHs (16 species) in the estuarine river water. 95.9% of the sampling sites demonstrated moderate PAHs pollution and moderate ecological risk. Coal and petroleum combustion was the primary source of PAHs, but the source composition varied among the regions. Air pollution caused by energy emissions, particularly carbon emissions, has a critical and differential effect on PAHs distribution and deposition. With the increasing use of clean energy, PAHs emissions have been gradually reduced, which provides an effective option for PAHs reduction in a rapidly urbanizing coastal region.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos , Urbanización , Contaminantes Químicos del Agua/análisis
10.
Environ Pollut ; 292(Pt B): 118404, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699921

RESUMEN

The impact of meteorological factors on the transport behavior and distribution of volatile and semi-volatile organic pollutants has become an area of increasing concern. Here, we analyzed seasonal variation in climatic variables including wind, temperature, and precipitation to quantitatively assess the impact of these factors on the multimedia transport and fate of BaP in the continental region of China using a Berkeley-Trent (BETR) model. The advective rates of air exhibited an increasing trend of autumn (1.830 mol/h) < summer (1.975 mol/h) < winter (2.053 mol/h) < spring (2.405 mol/h) in association with increasing wind speed, indicating that lower atmospheric BaP concentrations are present in regions with high wind speeds and advective rates. The air-soil transport rates (0.08-45.55 mol/h) in winter were higher than in summer (0.07-32.41 mol/h), while low winter temperatures accelerate BaP accumulation in terrestrial ecosystems due to cold deposition. Cold deposition effects were more evident in northern regions than in southern regions. Further, increasing precipitation enhanced air-soil and soil-freshwater transport rates with the correlation coefficients of r = 0.445 and r = 0.598 respectively, while decreasing the air-vegetation transport rates (r = 0.475), thereby contributing to the accumulation of BaP in soils and freshwaters. In the light of the potential dispersion of BaP pollution at regional and global scales affected by these key climatic factors, this indirectly indicated the impact of future climate change on the BaP transport. Thus, flexible policy interventions should be enacted to slow future climate change.


Asunto(s)
Contaminantes Atmosféricos , Benzo(a)pireno , Contaminantes Atmosféricos/análisis , Benzo(a)pireno/análisis , China , Ecosistema , Monitoreo del Ambiente , Multimedia , Estaciones del Año
11.
J Hazard Mater ; 424(Pt C): 127570, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34753647

RESUMEN

Coastal ecosystem health is of vital importance to human well-being. Field investigations of major pollutants along the whole coast of China were carried out to explore associations between coastal development activities and pollutant inputs. Measurements of target pollutants such as PFAAs and PAHs uncovered notable levels in small estuary rivers. The Yangtze River was identified to deliver the highest loads of these pollutants to the seas as a divide for the spatial distribution of pollutant compositions. Soil concentrations of the volatile and semi-volatile pollutants showed a cold-trapping effect in pace with increasing latitudinal gradient. The coastal ecosystem is facing high ecological risks from metal pollution, especially copper (Cu) and zinc (Zn), while priority pollutants of high risks vary for different kinds of protected species, and the ecological risks were influenced by both climate and physicochemical properties of environmental matrices, which should be emphasized to protect and restore coastal ecosystem functioning.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Océanos y Mares , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
12.
Sci Total Environ ; 809: 151994, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34871688

RESUMEN

Riverine water exposed to heavy metals (HMs) pollution is a major concern in the world because of its serious effects on ecosystem and human health. This study assessed the pollution status, sources, diffusion and potential risks of Mn, Co, Cu, Zn, Cr, Ni, Cd, Hg and Pb for the first time along the entire Indus Drainage System of Pakistan. The concentrations of nine HMs in the riverine water ranged from 5.05-101.59 µg/L with a mean value of 41.51 µg/L. The overall metals quantification along the drainage was significantly high (27% of the total) in River Chenab followed by River Indus (26%) > Soan (20%) > Ravi (19%) > Kabul (5%) > Swat (3%). The potential sources of contamination were identified to be the surrounding geogenic activities, industrial/municipal wastewater discharges, agricultural and surface runoffs by using multivariate statistics including metals correlation analysis, hierarchical cluster analysis and principal component analysis. The average mass flux of ∑HMs in the entire drainage was approximately 10.24 tons/year, to which the River Indus contributed 84% of the total, Chenab 11%, Ravi 3%, Kabul 1%, and Soan 1% with more prevalence of biological essential (Zn&Mn) and non-essential (Ni&Cr) metals. In terms of ecological risk, the riverine water metals contamination (1.59 to 57.06) was within the risk threshold (ERI < 110), while the risks of ∑carcinogenic metals for exposed children and adults along the basin were significantly influenced between acceptable to high cancer risk by Cd, Co, Ni, Cr and Pb.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adulto , Niño , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Metales Pesados/análisis , Pakistán , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
13.
J Environ Sci (China) ; 109: 15-25, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607664

RESUMEN

Emission intensity and climate change control the transport flux and fate of persistent organic pollutants (POPs) in multiple environmental compartments. This study applied a multimedia model (BETR model) to explore alternations in the spatio-temporal trends of concentrations and transport flux of benzopyrene (BaP), phenanthrene (Phe), perfluorooctane sulfonates (PFOS) and polychlorinated biphenyls (PCBs) in the Chaohu watershed, located in the lower reaches of the Yangtze River, China in response to changes in source emissions and climate. The potential historic and future risks of these pollutants also were assessed. The results suggest that current trends in concentrations and transport were similar to that of their emissions between 2005 and 2018. During the next 100 years, temporal trends and spatial patterns were not predicted to change significantly, which is consistent with climate change. Based on sensitivity and correlation analyses, climate change had significant effects on multi-media concentrations and transport fluxes of BaP, Phe, PFOS and PCBs, and rainfall intensity was the predominant controlling factor. Risk quotients (RQs) of BaP and Phe-in soil increased from 0.42 to 0.95 and 0.06 to 0.35, respectively, from 2005 to 2090, indicating potential risks. The RQs of the other examined contaminants exhibited little potential risk in soil, water, or sediment. Based on spatial patterns, it was inferred that the ecosystem around Lake Chaohu is the most at risk. The study provides insights needed for local pollution control of POPs in the Chaohu watershed. In addition, the developed approach can be applied to other watersheds world-wide.


Asunto(s)
Cambio Climático , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente , Multimedia , Contaminantes Orgánicos Persistentes , Contaminantes Químicos del Agua/análisis
14.
IEEE Trans Cybern ; 51(2): 779-788, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31545762

RESUMEN

In this article, we investigate optimal transmission power allocation at a sensor equipped with the energy-harvesting technology for remote state estimation in wireless cyber-physical systems. The sensor has access to an energy harvester, which can collect energy from the external environment and is an everlasting but unreliable energy source compared with conventional batteries. For the wireless dropping communication channel, the packet dropout rates depend on both the signal-to-noise ratio and the transmission power used by the sensor. We formulate the problem of the optimal transmission power allocation to minimize the remote estimation error covariances as a Markov decision processes (MDPs) subject to energy constraint of the sensor. By analyzing the MDP algorithm, we show that an optimal deterministic and stationary transmission power policy exists. Moreover, we show that the optimal policy has a threshold-type structure. A numerical simulation is provided to illustrate the performance of the transmission power allocation algorithm.

15.
Ecotoxicol Environ Saf ; 186: 109628, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31614301

RESUMEN

The water quality in drinking water source area is essential for human health. Due to rapid urbanization and industrialization, the pollutants, especially trace elements, are continuously discharged into aquatic environment and pose a risk to human health. An extensive investigation was carried out in drinking water source area in highly urbanized Tianjin of China. Long-term monitoring data of the water body was collected on conventional physical and chemical parameters (pH, ions, TOC etc.) and metallic elements (Hg, As Cd, Pb, Co, U etc.) from 2005 to 2017. Our results showed that CaMg-Cl-SO4 and CaMg-HCO3 were the two prominent hydrochemical materials, implying that the pollution of aquatic system was mainly caused by anthropogenic activities and mineral dissolution within terms of drinking water guidelines (national and international standards), the concentrations of arsenic (As) and iron (Fe) were beyond the quality standards. Multivariate statistical approaches were applied to assess the origins of the elements. The results showed that human activities, as well as endogenous release, contributed significantly to appearance of trace elements. A transformation from low-trophic state to high-trophic state was in progress from 2005 to 2017 in Yuqiao reservoir, and most of the water was not heavily polluted by trace elements. The health risk assessment suggested that As had the potential to cause carcinogenic harm to the local residents, with daily dietary ingestion as the most predominant pathway.


Asunto(s)
Agua Potable/normas , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Agua Dulce/química , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , China , Agua Potable/química , Humanos , Medición de Riesgo , Oligoelementos/análisis , Urbanización
16.
Sci Total Environ ; 697: 133851, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31479908

RESUMEN

Perfluoroalkyl acids (PFAAs) are ubiquitous in the global environment, even in remote regions. With increasing production and application of PFAAs in China, their distribution patterns have been widely reported, however with less attention to inland northwestern regions. Long-range transport and direct releases from local activities have been regarded as the main reasons for PFAAs distribution in such a remote area. To identify and quantify the contributions of different sources to PFAAs occurrences, an investigation was conducted in the Tianchi lake, nature reserve. A total of 20 water samples, 8 soil, 4 sediment and 10 fresh snow samples were collected and analyzed in 2015. The mean PFAAs concentrations were 3.38 ng L-1 in surface water, 1.06 ng g-1 dw in soil, 0.53 ng g-1 dw in sediment, and 3.31 ng L-1 in fresh snow, respectively. High levels of PFAAs were observed in surface water (15.41 ng L-1) from Western Tianchi pond and surface snow (14.24 ng L-1) from the site near a ski resort around Tianchi Lake indicating potential pollution by local human activities. The correlation between individual concentrations among water, soil and snow indicated the snow deposition as an important source. Although with limited sample size, principal component analysis associated with multiple linear regression (PCA-MLR) and positive matrix factorization (PMF) analyses have identified two major sources, which are characterized as tourism activities with dominance of perfluorooctanoic acid (PFOA) and long-range transport with abundant perfluorobutanoic acid (PFBA). Their contributions to total levels were 41% and 52%, respectively. These two sources contributed differently to the PFAAs presences in Tianchi and Western Tianchi Lakes. Source analysis indicates that the western Tianchi lake with a relatively small catchment was affected mainly by local activities.

17.
Sci Adv ; 5(8): eaau9413, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31457075

RESUMEN

After 40 years of reform and "opening up," China has made remarkable economic progress. Such economic prosperity, however, has been coupled with environmental degradation. We analyze diverse long-term data to determine whether China is experiencing a decoupling of economic growth and environmental impacts, and where China stands with respect to the Sustainable Development Goals (SDGs) in terms of reducing regional division, urban-rural gap, social inequality, and land-based impacts on oceans. The results highlight that China's desire to achieve "ecological civilization" has resulted in a decoupling trend for major pollutants since 2015, while strong coupling remains with CO2 emissions. Progress has been made in health care provision, poverty reduction, and gender equity in education, while income disparity continues between regions and with rural-urban populations. There is a considerable way to go toward achieving delivery of the SDGs; however, China's progress toward economic prosperity and concomitant sustainability provides important insights for other countries.

18.
IEEE Trans Neural Netw Learn Syst ; 30(12): 3656-3664, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30908244

RESUMEN

Multiagent systems (MASs) are usually applied with agents classified into leaders and followers, where selecting appropriate leaders is an important issue for formation control applications. In this paper, we investigate two leader selection problems in second-order MAS, namely, the problem of choosing up to a given number of leaders to minimize the formation error and the problem of choosing the minimum number of leaders to achieve a tolerated level of error. We propose a game theoretical method to address them. Specifically, we design a supermodular game for the leader selection problems and theoretically prove its supermodularity. In order to reach Nash equilibrium of the game, we propose strategies for the agents to learn to select leaders based on stochastic fictitious play. Extensive simulation results demonstrate that our method outperforms existing ones.

19.
Ecotoxicol Environ Saf ; 174: 208-217, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30826547

RESUMEN

Polyfluoroalkyl substances (PFASs) enter into environmental metric via various pathways in the process of manufacturing and consuming the products containing PFASs. Yuqiao reservoir (YQR) is a major drinking water source in Tianjin of China, where little attention was given to PFASs. To explore the occurrence, source and risk of 17 PFASs, multi-media environmental including soil, water, and sediment were sampled from this water source area. The ∑PFASs concentrations of surface water, groundwater, soil and sediment ranged from 5.839 to 120.885 ng/L, 1.426 to 17.138 ng/L, 0.622 to 5.089 µg/kg dw, and 0.240 to 1.210 µg/kg dw respectively. Some short-chained (C4-C8) PFASs were detected widely such as PFOA, PFBA, PFHxA, PFBS, PFHpA and PFPeA in surface water and groundwater, with the detection frequency of >78%, and PFBA and PFOA dominated in the 17 PFASs. In addition, the correlations between total PFASs and TOC were significant at 0.05 level, especially in surface water with R2 = 0.9165 (p = 0.011). In terms of vertical distribution characteristics of ∑PFASs, the ∑PFASs in four sediment cores showed a decreasing trend at first, and then an increasing trend from the bottom to the top associated with TOC. PFBA/PFOA and PFHpA/PFOA showed better linear correlations with R2 of 0.5541 (p = 0.039), and for PFNA/PFOA and PFHpA/PFOA with R2 of 0.6312 (p = 0.032) at the 0.05 level in the surface water, which indicated that sewage and atmospheric precipitation were the major sources. Though the RQ results based on the measured concentrations and reference values in environmental media revealed lower risks, the potential hazard may occur due to accumulation characteristics and long-distance transmission capability of PFASs. Hence, the corresponding management strategies should be taken, such as control over emission at source, product substitution and strengthening legislation, to eliminate potential risks to human health.


Asunto(s)
Agua Potable/química , Monitoreo del Ambiente/métodos , Fluorocarburos/análisis , Sedimentos Geológicos/química , Suelo/química , Contaminantes Químicos del Agua/análisis , China , Agua Subterránea/química , Humanos , Medición de Riesgo , Aguas del Alcantarillado/química
20.
Environ Pollut ; 243(Pt A): 492-500, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30216881

RESUMEN

The production of polychlorinated biphenyls (PCBs) has been banned globally for decades, but PCB concentrations in environmental media remain relatively high, especially in urban areas. Emissions estimates, studies of soil gradients between urban and rural areas, and quantitative identification of regional sources of PCBs in soils are necessary for understanding the environmental behavior of PCBs. In this study, regional PCB emissions were estimated at a resolution of 10 km × 10 km, and the spatial distribution of soil PCBs from urban to rural areas was studied along the Bohai and Yellow Sea regions. Compared with rural areas, mean PCB concentrations in urban soils (20.7 ng/g) were found to be higher, and concentrations decreased with distance from the city. Across both latitude and longitude directions, high PCB emissions in urban areas matched the distribution of total PCB concentrations in soils. The concentrations of the pollutants PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180 in soils originated from 5-year emissions, and accounted for 97%, 95%, 84%, 81%, 58%, 57%, and 27% of the total emissions, respectively. Unintentionally produced PCB (UP-PCB) emissions, which are mainly derived from cement (42%), pig iron (37%), crude steel (18%), and rolled steel (3%) industries, are the major contributors to PCBs in soils. Further identification of the sources and fates of PCBs requires a combination of field, laboratory, and modeling efforts.


Asunto(s)
Monitoreo del Ambiente , Bifenilos Policlorados/química , Contaminantes del Suelo/química , Suelo/química , Compuestos de Bifenilo , Ciudades , Industrias , Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...