Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioresour Bioprocess ; 11(1): 14, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647879

RESUMEN

Traditional autoclaving, slow degradation rate and preservation of biomass treated by fungi are the main factors restricting biological treatment. In our previous studies, strains with high efficiency and selective lignin degradation ability were obtained. To further solve the limiting factors of biological treatment, this paper proposed a composite treatment technology, which could replace autoclaves for fungal treatment and improve the preservation and utilization of fungal-pretreated straw. The autoclaved and expanded buckwheat straw were, respectively, degraded by Irpex lacteus for 14 days (CIL, EIL), followed by ensiling of raw materials (CK) and biodegraded straw of CIL and EIL samples with Lactobacillus plantarum for different days, respectively (CP, CIP, EIP). An expansion led to lactic acid bacteria, mold, and yeast of the samples below the detection line, and aerobic bacteria was significantly reduced, indicating a positive sterilization effect. Expansion before I. lacteus significantly enhanced lignin selective degradation by about 6%, and the absolute content of natural detergent solute was about 5% higher than that of the CIL. Moreover, EIL decreased pH by producing higher organic acids. The combination treatment created favorable conditions for ensiling. During ensiling, EIP silage produced high lactic acid about 26.83 g/kg DM and the highest acetic acid about 22.35 g/kg DM, and the pH value could be stable at 4.50. Expansion before I. lacteus optimized the microbial community for ensiling, resulting in EIP silage co-dominated by Lactobacillus, Pediococcus and Weissella, whereas only Lactobacillus was always dominant in CP and CIP silage. Clavispora gradually replaced Irpex in EIP silage, which potentially promoted lactic acid bacteria growth and acetic acid production. In vitro gas production (IVGP) in EIL was increased by 30% relative to CK and was higher than 24% in CIL. The role of expansion was more significant after ensiling, the IVGP in EIP was increased by 22% relative to CP, while that in CIP silage was only increased by 9%. Silage of fungal-treated samples reduced methane emissions by 28% to 31%. The study demonstrated that expansion provides advantages for fungal colonization and delignification, and further improves the microbial community and fermentation quality for silage, enhancing the nutrition and utilization value. This has practical application value for scaling up biological treatment and preserving the fungal-treated lignocellulose.

2.
Front Immunol ; 15: 1370707, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596686

RESUMEN

Background: Hypothyroidism, a prevalent endocrine disorder, carries significant implications for maternal and infant health, especially in the context of maternal hypothyroidism. Despite a gradual surge in recent research, achieving a comprehensive understanding of the current state, focal points, and developmental trends in this field remains challenging. Clarifying these aspects and advancing research could notably enhance maternal-infant health outcomes. Therefore, this study employs bibliometric methods to systematically scrutinize maternal hypothyroidism research, serving as a reference for further investigations. Objective: Through bibliometric analysis, this study seeks to unveil key research focus areas, developmental trends, and primary contributors in Maternal Hypothyroidism. The findings offer insights and recommendations to inform future research endeavors in this domain. Methods: Literature metrics analysis was performed on data retrieved and extracted from the Web of Science Core Collection database. The analysis examined the evolution and thematic trends of literature related to Maternal Hypothyroidism. Data were collected on October 28, 2023, and bibliometric analysis was performed using VOSviewer, CiteSpace, and the Bibliometrix software package, considering specific characteristics such as publication year, country/region, institution, authorship, journals, references, and keywords. Results: Retrieved from 1,078 journals, 4,184 articles were authored by 18,037 contributors in 4,580 institutions across 113 countries/regions on six continents. Maternal Hypothyroidism research publications surged from 44 to 310 annually, a 604.54% growth from 1991 to 2022. The USA (940 articles, 45,233 citations), China Medical University (82 articles, 2,176 citations), and Teng, Weiping (52 articles, 1,347 citations) emerged as the most productive country, institution, and author, respectively. "Thyroid" topped with 233 publications, followed by "Journal of Clinical Endocrinology & Metabolism" (202) with the most citations (18,513). "Pregnancy" was the most cited keyword, with recent high-frequency keywords such as "outcome," "gestational diabetes," "iodine intake," "preterm birth," "guideline," and "diagnosis" signaling emerging themes in Maternal Hypothyroidism. Conclusions: This study unveils developmental trends, global collaboration patterns, foundational knowledge, and emerging frontiers in Maternal Hypothyroidism. Over 30 years, research has predominantly focused on aspects like diagnosis, treatment guidelines, thyroid function during pregnancy, and postpartum outcomes, with a central emphasis on the correlation between maternal and fetal health.


Asunto(s)
Hipotiroidismo , Nacimiento Prematuro , Recién Nacido , Lactante , Femenino , Embarazo , Humanos , Hipotiroidismo/epidemiología , Autoria , Bibliometría
3.
Environ Sci Pollut Res Int ; 31(14): 21458-21470, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388981

RESUMEN

The Qinghai-Tibet Plateau (QTP) is characterized by an extreme hypoxia, which may lead to lack of sufficient oxygen for compost production, and thus seriously affecting the compost quality. The moisture content (MC) has a direct effect on the oxygen content of composting pile. At present, the research on the optimum moisture content of compost production on the QTP is still lacking. This study aimed to investigate the influences of MC on fermentation quality of sheep manure composting on the QTP and to further analyze the changes of microbial metabolic function and enzyme activity under different MC. Composting experiment with low MC (45%) and conventional MC (60%) was conducted in both summer and autumn. The results showed that the composting efficiency of 45% MC was better than 60% in both seasons, which was mainly manifested as longer high-temperature period (summer:16 d vs 14 d, autumn: 7 d vs 2 d), higher germination index (summer:136.1% vs 128.6%, autumn:103.5% vs 81.2%), and more humus synthesis (summer:159.8 g/kg vs 151.2 g/kg, autumn:136.1 k/kg vs 115.5 k/kg). The 45% MC can improve microbial metabolism, including increasing the abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism and improving the activities of cellulase, ß-glucosidase, protease, polyphenol oxidase, and peroxidase. In conclusion, 45% MC can improve the fermentation efficiency and products quality of sheep manure compost on QTP.


Asunto(s)
Compostaje , Suelo , Animales , Ovinos , Estiércol , Tibet , Oxígeno
4.
J Invertebr Pathol ; 203: 108061, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244837

RESUMEN

This study explores the transcriptomic differences in two distinct phases of Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei, a crucial aspect in shrimp health management. We employed high-throughput sequencing to categorize samples into two phases, 'Phase A' and 'Phase B', defined by the differential expression of PTP2 and TPS1 genes. Our analysis identified 2057 genes, with 78 exhibiting significant variances, including 62 upregulated and 16 downregulated genes. Enrichment analyses via GO and KEGG pathways highlighted these genes' roles in cellular metabolism, signal transduction, and immune responses. Notably, genes like IQGAP2, Rhob, Pim1, and PCM1 emerged as potentially crucial in EHP's infection process and lifecycle. We hypothesize that these genes may influence trehalose metabolism and glucose provision, impacting the biological activities within EHP during different phases. Interestingly, a lower transcript count in 'Phase A' EHP suggests a reduction in biological activities, likely preparing for host cell invasion. This research provides a foundational understanding of EHP infection mechanisms, offering vital insights for future studies and therapeutic interventions.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Enterocytozoon/fisiología , Perfilación de la Expresión Génica , Transcriptoma , Penaeidae/genética , Alimentos Marinos
5.
Adv Sci (Weinh) ; 11(9): e2307880, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38093654

RESUMEN

To rescue ischemic myocardium from progressing to myocardial infarction, timely identification of the infarct size and reperfusion is crucial. However, fast and accurate identification, as well as the targeted protection of injured cardiomyocytes following ischemia/reperfusion (I/R) injury, remain significantly challenging. Here, a near infrared heptamethine dye IR-780 is shown that has the potential to quickly monitor the area at risk following I/R injury by selectively entering the cardiomyocytes of the at-risk heart tissues. Preconditioning with IR-780 or timely IR-780 administration before reperfusion significantly protects the heart from ischemia and oxidative stress-induced cell death, myocardial remodeling, and heart failure in both rat and pig models. Furthermore, IR-780 can directly bind to F0F1-ATP synthase of cardiomyocytes, rapidly decrease the mitochondrial membrane potential, and subsequently slow down the mitochondrial energy metabolism, which induces the mitochondria into a "quiescent state" and results in mitochondrial permeability transition pore inhibition by preventing mitochondrial calcium overload. Collectively, the findings show the feasibility of IR-780-based imaging and protection strategy for I/R injury in a preclinical context and indicate that moderate mitochondrial function depression is a mode of action that can be targeted in the development of cardioprotective reagents.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratas , Animales , Porcinos , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Preparaciones Farmacéuticas , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Adenosina Trifosfato/metabolismo
6.
Bioresour Technol ; 394: 130191, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081470

RESUMEN

Understanding the mechanisms of sulfur and phosphorus transformation during composting is important for improving compost fertility. This study aims to investigate the microbial mechanism of available sulfur and phosphorus transformation during sheep manure composting under different moisture contents (45%: M45 and 60%: M60) on the Qinghai-Tibet Plateau using metagenomics technology. The results showed that the final available sulfur and phosphorus contents of M45 were 11% and 13% higher than those of M60, respectively. M45 enhanced sulfur oxidation, sulfate reduction, and thiosulfate disproportionation. These steps were significantly positively correlated with available sulfur, and Pseudomonas, Thermobifida, Luteimonas, Brevibacterium, Planifilum, and Xinfangfangia were the main participants. Available phosphorus was significantly positively correlated with polyphosphate degradation and inorganic P solubilization, and the main participants in these steps were Luteimonas, Brachybacterium, Corynebacterium, Jeotgalicoccus, Microbacterium, Streptomyces, and Pseudoxanthomonas. These findings reveal the microbial mechanisms of available and phosphorus transformation during composting at two moisture contents.


Asunto(s)
Compostaje , Animales , Humanos , Ovinos , Fósforo/análisis , Estiércol , Tibet , Suelo , Azufre , Nitrógeno/análisis
7.
Adv Sci (Weinh) ; 11(9): e2307074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102822

RESUMEN

Traditional palladium-catalyzed dearomatization of (hetero)arenes takes place via an ionic pathway and usually requires elevated temperatures to overcome the energy barrier of the dearomative insertion step. Herein, a combination of the radical and two-electron pathways is disclosed, which enables room temperature dearomative 3D transformations of nonactivated phenyl rings with Pd(0) as the catalyst. Experimental results together with density functional theory (DFT) calculations indicate a versatile π-allyl Pd(II) species, cyclohexadienyl Pd(II), possibly is involved in the dearomatization. This species is generated by combining the cyclohexadienyl radical and Pd(I). The cyclohexadienyl Pd(II) provides chemoselective (carboamination and trieneylation), regioselective (1,2-carboamination), and diastereoselective (carbonyl-group directed face selectivity) conversions.

8.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069062

RESUMEN

Enterocytozoon hepatopenaei (EHP) is a microsporidian parasite that infects Litopenaeus vannamei, causing severe hepatopancreatic microsporidiosis (HPM) and resulting in significant economic losses. This study utilizes a combined analysis of transcriptomics and metabolomics to unveil the dynamic molecular interactions between EHP and its host, the Pacific white shrimp, during the early and late stages of infection. The results indicate distinct immunological, detoxification, and antioxidant responses in the early and late infection phases. During early EHP infection in shrimp, immune activation coincides with suppression of genes like Ftz-F1 and SEPs, potentially aiding parasitic evasion. In contrast, late infection shows a refined immune response with phagocytosis-enhancing down-regulation of Ftz-F1 and a resurgence in SEP expression. This phase is characterized by an up-regulated detoxification and antioxidant response, likely a defense against the accumulated effects of EHP, facilitating a stable host-pathogen relationship. In the later stages of infection, most immune responses return to baseline levels, while some immune genes remain active. The glutathione antioxidant system is suppressed early on but becomes activated in the later stages. This phenomenon could facilitate the early invasion of EHP while assisting the host in mitigating oxidative damage caused by late-stage infection. Notably, there are distinctive events in polyamine metabolism. Sustained up-regulation of spermidine synthase and concurrent reduction in spermine levels suggest a potential role of polyamines in EHP development. Throughout the infection process, significant differences in genes such as ATP synthase and hexokinase highlight the continuous influence on energy metabolism pathways. Additionally, growth-related pathways involving amino acids such as tryptophan, histidine, and taurine are disrupted early on, potentially contributing to the growth inhibition observed during the initial stages of infection. In summary, these findings elucidate the dynamic interplay between the host, Litopenaeus vannamei, and the parasite, EHP, during infection. Specific phase differences in immune responses, energy metabolism, and antioxidant processes underscore the intricate relationship between the host and the parasite. The disruption of polyamine metabolism offers a novel perspective in understanding the proliferation mechanisms of EHP. These discoveries significantly advance our comprehension of the pathogenic mechanisms of EHP and its interactions with the host.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Antioxidantes , Enterocytozoon/genética , Alimentos Marinos , Penaeidae/genética , Poliaminas
9.
Angew Chem Int Ed Engl ; 62(41): e202310118, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37594845

RESUMEN

Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139ß, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37644752

RESUMEN

BACKGROUND: Previous studies have proposed that the transcriptional regulatory factor tripartite motif containing 29 (TRIM29) is involved in carcinogenesis via binding with nucleic acid. TRIM29 is confirmed to be highly expressed when the cancer cells acquire therapy-resistant properties. We noticed that TRIM29 levels were significantly increased in anlotinib-resistant NCI-H1975 (NCI-H1975/AR) cells via mining data information from gene expression omnibus (GEO) gene microarray (GSE142031; log2 fold change > 1, p < 0.05). OBJECTIVE: Our study aimed to investigate the function of TRIM29 on the resistance to anlotinib in non-small cell lung cancer (NSCLC) cells, including NCI-H1975 and A549 cells. METHODS: Real-time RT-PCR and western blot were used to detect TRIM29 expression in anlotinib-resistant NSCLC (NSCLC/AR) cells. Apoptosis were determined through flow cytometry, acridine orange/ethidium bromide staining as well as western blot. ELISA was used to measure the content of C-X3-C motif chemokine ligand 1. Co-Immunoprecipitation assay was performed to verify the interaction between TRIM29 and RAD50 double-strand break repair protein (RAD50). RESULTS: TRIM29 expression was shown to be elevated in the cytoplasm and nucleus of NSCLC/AR cells compared to normal NSCLC cells. Next, we demonstrated that TRIM29 knockdown facilitated apoptosis and enhanced the sensitivity to anlotinib in NSCLC/AR cells. Based on the refined results citing from the database BioGRID, it was proved that TRIM29 interacted with RAD50. Herein, RAD50 overexpression diminished the pro-apoptotic effect induced by silencing TRIM29 in anlotinib-resistant A549 (A549/AR) cells. CONCLUSION: Finally, we concluded that the increased sensitivity to anlotinib in NSCLC/AR cells was achieved by knocking down TRIM29, besides, the positive effects of TRIM29 knockdown were attributed to the promotion of apoptosis via binding to RAD50 in NSCLC/AR cell nucleus. Therefore, TRIM29 might become a potential target for overcoming anlotinib resistance in NSCLC treatment.

11.
J Hazard Mater ; 459: 132112, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37494797

RESUMEN

Numerous efforts have been devoted to understanding the electron transfer process of uranium (UO22+) on adsorbent materials, whereas the potential oxygen vacancies (OVs) in metal oxides have long been overlooked. Once these interactions are taken into account, the emerging molecular orbital effects undoubtedly affect the adsorption process. Here, we synthesized CC/γ-MnO2 by growing MnO2 on carbon cloth (CC), followed by the creation of oxygen vacancies (OVs) through electrochemical methods to form CC/γ-MnO2-OVs. The CC/γ-MnO2-OVs shows significantly enhanced selectivity and durability for UO22+, with the maximum adsorption capacity increasing from 456.8 to 1648.1 mg/g (by a factor of 3.6). Theoretical calculations suggest that the generation of OVs leads to an increase in charge transfer and a decrease in adsorption energy between UO22+ and CC/γ-MnO2, due to the interaction between Mn 3d orbital in CC/γ-MnO2 and O 2p orbital in UO22+. The OVs in CC/γ-MnO2 provide a spatial structure for anchoring the OU=O moiety of UO22+, while the surface van der Waals forces and the formation of chemical bonds between Mn-U contribute to charge interactions. This synergistic effect allows CC/γ-MnO2-OVs to exhibit favorable selectivity, a large adsorption capacity, and rapid adsorption kinetics towards uranyl ions. This work achieves enhanced UO22+ separation by introducing OVs in CC/γ-MnO2 through a facile electrochemical strategy, highlighting the great potential for nuclear waste processing.

12.
J Invertebr Pathol ; 197: 107900, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36806462

RESUMEN

Enterocytozoon hepatopenaei (EHP), an obligate intracellular parasite classified as microsporidia, is an emerging pathogen with a significant impact on the global shrimp aquaculture industry. The understanding of how microsporidia germinate has been a key factor in exploring its infection process. However, the germination process of EHP was rarely reported. To gain insight into the germination process, we conducted a high-throughput sequencing analysis of purified EHP spores that had undergone in vitro germination treatment. This analysis revealed 137 differentially expressed genes, with 84 up-regulated and 53 down-regulated genes. While the functions of some of the genes remain unknown, this study provides important data on the transcriptomic changes before and after EHP germination, which can aid in further studies on the EHP infection mechanism.


Asunto(s)
Enterocytozoon , Penaeidae , Animales , Transcriptoma , Penaeidae/parasitología , Perfilación de la Expresión Génica , Enterocytozoon/genética , Esporas
13.
Life (Basel) ; 13(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36836882

RESUMEN

The sustainability of shrimp aquaculture can be achieved through the development of greenhouse and aquaponic rearing modes, which are classified as heterotrophic and autotrophic bacterial aquaculture systems. However, there have been few investigations into the discrepancies between the intestinal and water microbiota of these two rearing methods. In this study, we collected shrimp samples from greenhouse-rearing (WG) and aquaponic-rearing (YG) ponds, and water samples (WE, YE), and investigated the intestinal and water microbiota between the two rearing modes. The results, through alpha and beta diversity analyses, reveal that there was basically no significant difference between shrimp intestine WG and YG (p > 0.05) or between rearing water WE and YE (p > 0.05). At the phylum and genus levels, the common bacteria between WE and WG differed significantly from those of YE and YG. The analysis of the top six phyla shows that Proteobacteria and Patescibacteria were significantly more abundant in the WG group than those in the YG group (p < 0.05). Conversely, Actinobacteriota, Firmicutes, and Verrucomicrobiota were significantly more abundant in the YG group than those in the WG group (p < 0.05). Venn analysis between WE and WG shows that Amaricoccus, Micrococcales, Flavobacteriaceae, and Paracoccus were the dominant bacteria genera, while Acinetobacter, Demequina, and Rheinheimera were the dominant bacteria genera between YE and YG. Pathways such as the biosynthesis of secondary metabolites, microbial metabolism in different environments, and carbon metabolism were significantly more upregulated in WG than those in YG (p < 0.05). In addition, pathways such as sulfate, chloroplast, phototrophy, and the nitrogen metabolism were significantly different between the WE and YE samples. These findings suggest that the greenhouse mode, a typical heterotrophic bacterial model, contains bacterial flora consisting of Amaricoccus, Micrococcales, Flavobacteriaceae, and other bacteria, which is indicative of the biological sludge process. Conversely, the aquaponic mode, an autotrophic bacterial model, was characterized by Acinetobacter, Demequina, Rheinheimera, and other bacteria, signifying the autotrophic biological process. This research provides an extensive understanding of heterotrophic and autotrophic bacterial aquaculture systems.

14.
Chemistry ; 29(15): e202203217, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36460618

RESUMEN

When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.

15.
Arch Gynecol Obstet ; 307(1): 205-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275273

RESUMEN

PURPOSE: The present study was performed to clarify the regulatory mechanism of miR-518c-3p in the progression of endometriosis (EMs). METHODS: MicroRNAs (miRNAs) potentially acting on EMs were predicted by bioinformatics databases and validated in normal and ectopic endometrium. The miR-518c-3p mimics were transfected into endometrial stromal cells (ESCs), and cell growth, death, and proliferation marker proteins expression were detected. The targeting relationship of miR-518c-3p with zinc finger protein 608 (ZNF608) was validated by luciferase reporter assay. ESCs were incubated with miR-518c-3p mimics alone or co-transfected with pcDNA-ZNF608, and growth, death, as well as proliferation and epithelial-mesenchymal transition (EMT) marker protein expression were detected. A rat model of EMs overexpressing miR-518c-3p alone or ZNF608 simultaneously was constructed to detect ectopic endometrial cell apoptosis and cyst volume in rats. RESULTS: MiR-518c-3p expression was downregulated in ectopic endometrium. MiR-518c-3p mimic inhibited migration, invasion and proliferation of ESCs, and promoted apoptosis. MiR-518c-3p targeted the 3'UTR of ZNF608. ZNF608 expression was upregulated in ESCs and ectopic endometrium, and the regulatory effect of pcDNA-ZNF608 on ESCs was opposite to that of miR-518c-3p mimics. ZNF608 overexpressing rats had greater endometrial cyst weight and volume, and decreased endometrial apoptosis compared with miR-518c-3p overexpressing alone. CONCLUSION: MiR-518c-3p inhibited growth, metastasis and EMT of ESCs and decreased ectopic endometrial area in rats with EMs by targeting ZNF608.


Asunto(s)
Endometriosis , MicroARNs , Animales , Femenino , Ratas , Movimiento Celular , Proliferación Celular/genética , Endometriosis/patología , Endometrio/patología , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Bioresour Bioprocess ; 10(1): 53, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647985

RESUMEN

This study explored the effects of turning frequency on fermentation efficiency and microbial metabolic function of sheep manure composting on the Qinghai-Tibet Plateau (QTP). Five treatments with different turning frequencies were set up in this study: turning every 1 day (T1), 2 days (T2), 4 days (T3), 6 days (T4), and 8 days (T5). Results showed that the high temperature period for T1 and T5 lasted only 4 days, while that for T2-T4 lasted more than 8 days. The germination index of T1 and T5 was lower than 80%, while that of T2-T4 was 100.6%, 97.8%, and 88.6%, respectively. This study further predicted the microbial metabolic function of T2-T4 using the bioinformatics tool PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and determining the activities of various functional enzymes. The results showed that carbohydrate metabolism, protein metabolism, and nucleotide metabolism were the main metabolic pathways of microorganisms, and that T2 increased the abundance of functional genes of these metabolic pathways. The activities of protease, cellulase, and peroxidase in T2 and T3 were higher than those in T4, and the effect of T2 was more significant. In conclusion, turning once every 2 days can improve the quality of sheep manure compost on the QTP.

17.
Animals (Basel) ; 14(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38200760

RESUMEN

The hard texture and poor palatability of straw are important factors that hinder its application in feed. Expansion is a technology that can improve the utilization of biomass, but few studies have comprehensively revealed how to change physicochemical characteristics to improve nutritional value. In this study, mechanical and chemical methods were combined to study the texture properties, rheological properties, and physicochemical structures of straw, and its utilization value was evaluated by in vitro rumen digestion. Expansion caused hemicellulose degradation, cellulose separation, and lignin redistribution, resulting in a decrease in crystallinity. The hardness and chewiness of expanded straw were reduced by 55% to 66%, significantly improving palatability. The compressive stress could be reduced by 54-73%, and the relaxation elasticity was reduced by 5% when expanded straw was compressed. The compression deformation of expanded straw was doubled compared to feedstock, and the compacting degree was improved. Expanded straw significantly improved digestibility and gas production efficiency, which was due to the pore structure increasing the attachment of rumen microorganisms; besides that, the reduction of the internal structural force of the straw reduced energy consumption during digestion. The lignin content decreased by 10%, the hardness decreased further in secondary expansion, but the digestibility did not improve significantly.

18.
J Environ Pathol Toxicol Oncol ; 41(4): 11-23, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36374959

RESUMEN

Gestational diabetes mellitus (GDM), a common complication in pregnancy, could threaten the health of both pregnancies and their offspring. miR-210-3p has been reported that play a crucial role in many diseases. Nevertheless, the molecular mechanism and clinical significance of miR-210-3p in the GDM is still unclear. miR-210-3p was overexpressed in the pancreas of the GDM mouse model. Meanwhile, miR-210-3p weakens cell viability and promotes the apoptosis of pancreatic ß cells, impairing the function of pancreatic ß cells. Bioinformatics analysis showed that miR-210-3p directly targets the expression of Dtx1, and miR-210-3p negatively regulated dtx1. Down-expression of Dtx1 could increase the expression of insulin and boost the function of pancreatic ß cells through inhibiting expressions of p-Akt, p-mTOR, p-4E-BP1, and p-SGK1. Rescue experiments verified that miR-210-3p could regulate the function of pancreatic ß cells and adjust the content of TG, TC, and HDL in the blood of mice with GDM via regulating the expression of Dtx1. The study demonstrated that miR-210-3p is significantly overexpressed in the pancreas of the GDM mouse model, which could impair the function and cell viability of pancreatic ß cells via suppressing the expression of Dtx1 promotes the progression of GDM. These findings provide a novel strategy to treat GDM.


Asunto(s)
Diabetes Gestacional , Células Secretoras de Insulina , MicroARNs , Ubiquitina-Proteína Ligasas , Animales , Femenino , Humanos , Ratones , Embarazo , Apoptosis , Diabetes Gestacional/genética , Insulina , Células Secretoras de Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
ACS Macro Lett ; 11(6): 792-798, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35653639

RESUMEN

Poly(ethylene glycol) (PEG) has been extensively used in diverse applications. However, it is not biodegradable and shows abnormal immune responses. Herein, a fast, controlled, ring-opening polymerization (ROP) of 2-oxo-15-crown-5 (O-15C5) is reported to prepare well-defined PEG-like polyesters, poly(O-15C5). This approach relies on a coordination between the macrocyclic monomer and Na+ that increases the electrophilicity of the carbonyl group of O-15C5 and leads to a fast controlled ROP (dispersity, DM < 1.2). Both computational and mechanistic studies show that the selective Na+ binding to the monomer over poly(O-15C5) allows the ring-opening initiation and propagation to be more energetically favorable than side transesterifications. This is the key to control the challenging entropy-driven ROP of O-15C5. Moreover, with the aid of Na+ and organic base, poly(O-15C5) depolymerized readily into O-15C5 in 2 h. Also, it degraded in a buffer of pH 7.4 by hydrolysis.


Asunto(s)
Éteres Corona , Poliésteres , Polietilenglicoles , Polimerizacion
20.
Front Endocrinol (Lausanne) ; 13: 871548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634492

RESUMEN

Testicular torsion-detorsion is an ischaemia-reperfusion-induced male gonad injury that may lead to male infertility. Oxidative stress plays an important role in the ischaemia-reperfusion injury. Icariside II (ICA II) prevents oxidative stress and has obvious protective effects on spermatogenic function. The present study was aimed to investigate therapeutic potentials of ICA II on testicular torsion. 72 mice were randomly divided into three groups: sham-operated control group (n = 24), testicular ischemia-reperfusion + saline group (n = 24) and testicular ischemia-reperfusion + icariside II treated group (n = 24). Testicular ischemia-reperfusion was induced by the left testis rotated 360 degrees in a clockwise direction for 30 minutes followed by detorsion, the contralateral testis was removed. ICA II in saline (5 mg/kg/day) was administrated by gavage immediately after detorsion. The results demonstrated that ICA II alleviated testicular damage by mitigating spermatogenic cell injury and improving testosterone production in mouse models of testicular torsion. We revealed that ICA II alleviated oxidative stress and apoptosis in the testes, reduced inflammatory infiltration and accelerated angiogenesis. Briefly, ICA II administration ameliorated testicular damage by improving spermatogenic function and testosterone production, which supports its use as a pharmacological treatment of testicular torsion.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Animales , Flavonoides , Humanos , Isquemia/metabolismo , Masculino , Ratones , Estrés Oxidativo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Torsión del Cordón Espermático/complicaciones , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/metabolismo , Testículo , Testosterona/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...