Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969435

RESUMEN

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Plomo , Mercurio , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Mercurio/análisis , Plomo/análisis , Plomo/química , Estructuras Metalorgánicas/química , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Contaminantes Químicos del Agua/análisis , Técnicas Biosensibles/métodos , Grafito/química , Oro/química , Límite de Detección , Electrodos , ADN Catalítico/química
2.
Aging (Albany NY) ; 162024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39028290

RESUMEN

BACKGROUND: The aim of this study was to investigate the correlation between m6A methylation regulators and cell infiltration characteristics in tumor immune microenvironment (TIME), so as to help understand the immune mechanism of early-stage lung adenocarcinoma (LUAD). METHODS: The expression and consensus cluster analyses of m6A methylation regulators in early-stage LUAD were performed. The clinicopathological features, immune cell infiltration, survival and functional enrichment in different subtypes were analyzed. We also constructed a prognostic model. Clinical tissue samples were used to validate the expression of model genes through real-time polymerase chain reaction (RT-PCR). In addition, cell scratch assay and Transwell assay were also performed. RESULTS: Expression of m6A methylation regulators was abnormal in early-stage LUAD. According to the consensus clustering of m6A methylation regulators, patients with early-stage LUAD were divided into two subtypes. Two subtypes showed different infiltration levels of immune cell and survival time. A prognostic model consisting of HNRNPC, IGF2BP1 and IGF2BP3 could be used to predict the survival of early-stage LUAD. RT-PCR results showed that HNRNPC, IGF2BP1 and IGF2BP3 were significantly up-regulated in early-stage LUAD tissues. The results of cell scratch assay and Transwell assay showed that overexpression of HNRNPC promotes the migration and invasion of NCI-H1299 cells, while knockdown HNRNPC inhibits the migration and invasion of NCI-H1299 cells. CONCLUSIONS: This work reveals that m6A methylation regulators may be potential biomarkers for prognosis in patients with early-stage LUAD. Our prognostic model may be of great value in predicting the prognosis of early-stage LUAD.

3.
ACS Omega ; 9(27): 29928-29938, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005767

RESUMEN

The effect of surfactant, polymer, and tailor-made additives on the crystallization of γ-aminobutyric acid (GABA) was studied in this work. Cooling crystallization of GABA in water yielded plate-like crystals. In the presence of sodium stearate, polyhedral block-like crystals of GABA were obtained. Hydroxyethyl cellulose (HEC) led to rod-like crystals, in which the morphology was associated with additive concentrations. Six kinds of amino acids were used as tailor-made additives, and they exhibit different influences on crystal shape and size. The induction time of GABA was determined in the absence and presence of additives. The results showed that sodium stearate promoted nucleation, while HEC, l-Lysine, l-histidine, and l-tyrosine inhibited nucleation. Crystal face indexing, Hirshfeld surface analysis, and molecular dynamics (MD) simulation in aqueous solution-crystal systems were carried out to investigate the affecting factors of different crystal faces. The polymer additive was selected as an example during MD simulation to calculate intermolecular interactions between the crystal face and solvent or additive. The effect of the additive on the mobility of the solute in solution was also evaluated by mean-square displacement. The additive offers an effective approach for changing crystal morphology and particle size and adapting it to different production requirements.

4.
J Am Chem Soc ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031612

RESUMEN

In the realm of nanoscale materials design, achieving precise control over the dimensions of nanotubular architectures poses a substantial challenge. In our ongoing pursuit, we have successfully engineered a novel class of single-molecule nanotubes─isoreticular covalent organic pillars (iCOPs)─by stacking formylated macrocycles through multiple dynamic covalent imine bonds, guided by principles of reticular chemistry. Our strategic selection of rigid diamine linkers has facilitated the synthesis of a diverse array of iCOPs, each retaining a homologous structure yet offering distinct cavity shapes influenced by the linker choice. Notably, three of these iCOP variants feature continuous one-dimensional channels, exhibiting length-dependent host-guest interactions with α,ω-dibromoalkanes, and each presenting a distinct critical guest alkyl chain length threshold for efficient guest encapsulation. This newfound capability not only provides a platform for tailoring nanotubular structures with precision, but also opens new avenues for innovative applications in molecular recognition and the purification of complex mixtures.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39037051

RESUMEN

Passive radiative cooling technology without electric consumption is an emerging sustainability technology that plays a key role in advancing sustainable development. However, most radiative cooling materials are vulnerable to outdoor contamination and thermal/UV exposure, which leads to decreased performance. Herein, we report a hierarchically structured polyimide/zinc oxide (PINF/ZnO) composite membrane that integrates sunlight reflectance of 91.4% in the main thermal effect of the solar spectrum (0.78-1.1 µm), the mid-infrared emissivity of 90.0% (8-13 µm), UV shielding performance, thermal resistance, and ideal hydrophobicity. The comprehensive performance enables the composite membrane to yield a temperature drop of ∼9.3 °C, compared to the air temperature, under the peak solar irradiance of ∼800 W m-2. In addition, the temperature drop of as-obtained composite membranes after heating at 200 °C for 6 h in a nitrogen/air atmosphere can be well maintained at ∼9.0 °C, demonstrating their ideal radiative cooling effect in a high-temperature environment. Additionally, the PINF/ZnO composite membrane shows excellent chemical durability after exposure to the outdoor environment. This work provides a new strategy to integrate chemical durability and thermal resistance with radiative cooling, presenting great potential for passive radiative cooling materials toward practical applications in harsh environments.

6.
Small ; : e2402278, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822712

RESUMEN

The rapid proliferation of power sources equipped with lithium-ion batteries poses significant challenges in terms of post-scrap recycling and environmental impacts, necessitating urgent attention to the development of sustainable solutions. The cathode direct regeneration technologies present an optimal solution for the disposal of degraded cathodes, aiming to non-destructively re-lithiate and straightforwardly reuse degraded cathode materials with reasonable profits and excellent efficiency. Herein, a potential-regulated strategy is proposed for the direct recycling of degraded LiFePO4 cathodes, utilizing low-cost Na2SO3 as a reductant with lower redox potential in the alkaline systems. The aqueous re-lithiation approach, as a viable alternative, not only enables the re-lithiation of degraded cathode while ignoring variation in Li loss among different feedstocks but also utilizes the rapid sintering process to restore the cathode microstructure with desirable stoichiometry and crystallinity. The regenerated LiFePO4 exhibits enhanced electrochemical performance with a capacity of 144 mA h g-1 at 1 C and a high retention of 98% after 500 cycles at 5 C. Furthermore, this present work offers considerable prospects for the industrial implementation of directly recycled materials from lithium-ion batteries, resulting in improved economic benefits compared to conventional leaching methods.

7.
Biomed Pharmacother ; 176: 116855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850651

RESUMEN

Nano-particles demonstrating excellent anticancer properties have gradually found application in cancer therapy. However, their widespread use is impeded by their potential toxicity, high cost, and the complexity of the preparation process. In this study, we achieved exosome-like Centella asiatica-derived nanovesicles (ADNVs) through a straightforward juicing and high-speed centrifugation process. We employed transmission electron microscopy and nanoparticle flow cytometry to characterize the morphology, diameter, and stability of the ADNVs. We evaluated the in vitro anticancer effects of ADNVs using Cell Counting Kit-8 and apoptosis assays. Through sequencing and bicinchoninic acid protein analysis, we discovered the abundant presence of proteins and microRNAs in ADNVs. These microRNAs can target various diseases such as cancer and infection. Furthermore, we demonstrated the effective internalization of ADNVs by HepG2 cells, resulting in an increase in reactive oxygen species levels, mitochondrial damage, cell cycle arrest at the G1 phase, and apoptosis. Finally, we analyzed changes in cellular metabolites post-treatment using cell metabolomics techniques. Our findings indicated that ADNVs primarily influence metabolic pathways such as amino acid metabolism and lipid biosynthesis, which are closely associated with HepG2 treatment. Our results demonstrate the potential utility of ADNVs as anticancer agents.


Asunto(s)
Apoptosis , Proliferación Celular , Centella , Exosomas , Metabolómica , Nanopartículas , Extractos Vegetales , Triterpenos , Humanos , Células Hep G2 , Centella/química , Proliferación Celular/efectos de los fármacos , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/química , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , MicroARNs/metabolismo , MicroARNs/genética
8.
Sci Total Environ ; 943: 173748, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857793

RESUMEN

In many coastal cities around the world, continuing water degradation threatens the living environment of humans and aquatic organisms. To assess and control the water pollution situation, this study estimated the Biochemical Oxygen Demand (BOD) concentration of Hong Kong's marine waters using remote sensing and an improved machine learning (ML) method. The scheme was derived from four ML algorithms (RBF, SVR, RF, XGB) and calibrated using a large amount (N > 1000) of in-situ BOD5 data. Based on labeled datasets with different preprocessing, i.e., the original BOD5, the log10(BOD5), and label distribution smoothing (LDS), three types of models were trained and evaluated. The results highlight the superior potential of the LDS-based model to improve BOD5 estimate by dealing with imbalanced training dataset. Additionally, XGB and RF outperformed RBF and SVR when the model was developed using log10(BOD5) or LDS(BOD5). Over two decades, the BOD5 concentration of Hong Kong marine waters in the autumn (Sep. to Nov.) shows a downward trend, with significant decreases in Deep Bay, Western Buffer, Victoria Harbour, Eastern Buffer, Junk Bay, Port Shelter, and the Tolo Harbour and Channel. Principal component analysis revealed that nutrient levels emerged as the predominant factor in Victoria Harbour and the interior of Deep Bay, while chlorophyll-related and physical parameters were dominant in Southern, Mirs Bay, Northwestern, and the outlet of Deep Bay. LDS provides a new perspective to improve ML-based water quality estimation by alleviating the imbalance in the labeled dataset. Overall, the remotely sensed BOD5 can offer insight into the spatial-temporal distribution of organic matter in Hong Kong coastal waters and valuable guidance for the pollution control.


Asunto(s)
Monitoreo del Ambiente , Aprendizaje Automático , Agua de Mar , Hong Kong , Monitoreo del Ambiente/métodos , Agua de Mar/química , Tecnología de Sensores Remotos , Análisis de la Demanda Biológica de Oxígeno , Contaminación del Agua/estadística & datos numéricos , Contaminación del Agua/análisis , Contaminantes Químicos del Agua/análisis
9.
Talanta ; 276: 126260, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759364

RESUMEN

Lead ion pollution has become a serious public health concern worldwide. Therefore, sensitive detection of Pb2+ is critical to control lead pollution, assess risks, and safeguard the health of vulnerable populations. This study reports a highly sensitive labelling-free electrochemical aptasensor for Pb2+ detection. The aptasensor employs silver-platinum nanoparticles/graphene oxide (AgPt/GO) and Exonuclease III (Exo III) for signal amplification. GO provides high surface area and conductivity for immobilizing AgPt NPs, facilitating the immobilization of aptamer (Apt) probes on the electrode surface. Exo III enzymatically cleaves DNA strands on the electrode surface, releasing DNA segments to amplify the signal further. The synergistic amplification by AgPt/GO and ExoIII enables an extremely wide linear detection range of 0.05 pM-5 nM for Pb2+, with a low detection limit of 0.019 pM. Additionally, the G-quadruplex structure ensures excellent selectivity for Pb2+ detection, resulting in high reproducibility and stability of the aptasensor. The aptasensor was successfully applied to detect spiked Pb2+ in tap water samples, achieving recovery rates ranging from 96 to 108.4 %. By integrating nanomaterials, aptamers and enzymatic amplification, the aptasensor facilitates highly sensitive and selective detection of Pb2+, demonstrating potential for practical applications in environmental monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Grafito , Plomo , Nanocompuestos , Platino (Metal) , Plata , Grafito/química , Plomo/análisis , Plomo/química , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/química , Técnicas Electroquímicas/métodos , Platino (Metal)/química , Nanocompuestos/química , Plata/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Límite de Detección , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Electrodos , G-Cuádruplex
10.
Clin Rheumatol ; 43(6): 1855-1863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704780

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA) often leads to interstitial lung disease (ILD), significantly affecting patient outcomes. This study explored the diagnostic accuracy of a multi-biomarker approach to offer a more efficient and accessible diagnostic strategy for RA-associated ILD (RA-ILD). METHODS: Patients diagnosed with RA, with or without ILD, at Beijing Tiantan Hospital from October 2019 to October 2023 were analyzed. A total of 125 RA patients were included, with 76 diagnosed with RA-ILD. The study focused on three categories of indicators: tumor markers, inflammatory indicators, and disease activity measures. The heatmap correlation analysis was employed to analyze the correlation among these indicators. Logistic regression was used to determine odds ratios (OR) for indicators linked to RA-ILD risk. Receiver-operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic potential of these indicators for RA-ILD. RESULTS: The results of logistic regression analysis showed that tumor markers (carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and cytokeratin 19 fragment (CYFRA21-1)), as well as inflammatory indicators (neutrophil, neutrophil-to-lymphocyte ratio (NLR), platelet, C-reactive protein (CRP)) and disease activity measures (disease activity score-28-CRP (DAS28-CRP), rheumatoid factor (RF), and anti-cyclic peptide containing citrulline (anti-CCP)), were significantly associated with RA-ILD. The correlation coefficients among these indicators were relatively low. Notably, the combination indicator 4, which integrated the aforementioned three categories of biomarkers, demonstrated improved diagnostic accuracy with an AUC of 0.857. CONCLUSION: The study demonstrated that combining tumor markers, inflammatory indicators, and disease activity measures significantly enhanced the prediction of RA-ILD. Key Points • Multidimensional strategy: Integrated tumor markers, inflammatory indicators, and disease activity measures to enhance early detection of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). • Diagnostic accuracy: Employed heatmap correlation and logistic regression, identifying significant associations and improving diagnostic accuracy with a multidimensional biomarker combination. • Superior performance: The combined multidimensional biomarker strategy demonstrated higher diagnostic precision compared to individual or dual-category indicators. • Clinical relevance: Offers a promising, accessible approach for early detection of RA-ILD in clinical settings, potentially improving patient outcomes.


Asunto(s)
Artritis Reumatoide , Biomarcadores de Tumor , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/etiología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/sangre , Artritis Reumatoide/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Anciano , Biomarcadores/sangre , Curva ROC , Modelos Logísticos , Queratina-19/sangre , Adulto , Proteína C-Reactiva/análisis , Índice de Severidad de la Enfermedad , Antígeno CA-19-9/sangre , Antígenos de Neoplasias
11.
Front Microbiol ; 15: 1389235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711965

RESUMEN

Microcystins (MCs) are the most widespread cyanobacterial toxins in eutrophic water body. As high toxic intermediate metabolites, linearized MCs are further catalyzed by linearized microcystinase (MlrB) of Sphingopyxis sp. USTB-05. Here MlrB structure was studied by comprizing with a model representative of the penicillin-recognizing enzyme family via homology modeling. The key active sites of MlrB were predicted by molecular docking, and further verified by site-directed mutagenesis. A comprehensive enzymatic mechanism for linearized MCs biodegradation by MlrB was proposed: S77 transferred a proton to H307 to promote a nucleophilic attack on the peptide bond (Ala-Leu in MC-LR or Ala-Arg in MC-RR) of linearized MCs to form the amide intermediate. Then water was involved to break the peptide bond and produced the tetrapeptide as product. Meanwhile, four amino acid residues (K80, Y171, N173 and D245) acted synergistically to stabilize the substrate and intermediate transition states. This study firstly revealed the enzymatic mechanism of MlrB for biodegrading linearized MCs with both computer simulation and experimental verification.

12.
Int J Biol Macromol ; 270(Pt 2): 132458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772458

RESUMEN

The salient gelling feature of alginate via forming the egg-box structure with calcium ions has received extensive interests for different applications. Owing to the interfacial incompatibility of rigid inorganic solids with soft polymers, the requirement of overall stereocomplexation with calcium released from uniformly distributed solids in alginate remains a challenge. In this study, a novel alginate-incorporated calcium source was proposed to tackle the intractable dispersion for the preparation of injectable alginate hydrogels. Calcium phosphate synthesis in alginate solution yielded CaP-alginate hybrids as a calcium source. The physicochemical characterization confirmed the CaP-alginate hybrid was a nano-scale alginate-hydroxyapatite complex. The colloidally stable CaP-alginate hybrids were uniformly dispersed in alginate solutions even under centrifugation. The calcium-induced gelling of the CaP-alginate hybrids-loaded alginate solutions formed soft yet tough hydrogels including transparent sheets and knittable threads, confirming the homogeneous gelation of the hydrogel. The gelation time, injectability and mechanical properties of the hydrogels could be adjusted by changing preparation parameters. The prepared hydrogels showed uniform porous structure, excellent swelling, wetting properties and cytocompatibility, showing a great potential for applications in different fields. The present strategy with organic/inorganic hybridization could be exemplarily followed in the future development of functional hydrogels especially associated with the interface integration.


Asunto(s)
Alginatos , Durapatita , Hidrogeles , Hidrogeles/química , Alginatos/química , Durapatita/química , Materiales Biocompatibles/química , Inyecciones , Animales , Fenómenos Mecánicos , Ratones
13.
Langmuir ; 40(11): 5959-5967, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38449109

RESUMEN

Iodine radioisotopes, produced or released during nuclear-related activities, severely affect human health and the environment. The efficient removal of radioiodine from both aqueous and vapor phases is crucial for the sustainable development of nuclear energy. In this study, we propose an "N-heteroatom engineering" strategy to design three porous organic cages with N-containing functional groups for efficient iodine capture. Among the molecular cages investigated, FT-Cage incorporating tertiary amine groups and RT-Cage with secondary amine groups show higher adsorption capacity and much faster iodine release compared to IT-Cage with imine groups. Detailed investigations demonstrate the superiority of amine groups, along with the influence of crystal structures and porosity, for iodine capture. These findings provide valuable insights for the design of porous organic cages with enhanced capabilities for capturing iodine.

14.
Nanomaterials (Basel) ; 14(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535663

RESUMEN

The porous TiCO ceramic was synthesized through a one-step sintering method, utilizing phenolic resin, TiO2 powder, and KCl foaming agent as raw materials. Ni(NO3)2·6H2O was incorporated as a catalyst to facilitate the carbothermal reaction between the pyrolytic carbon and TiO2 powder. The influence of Ni(NO3)2·6H2O catalyst content (0, 5, 10 wt.% of the TiO2 powder) on the microstructure, compressive strength, and thermal conductivity of the resultant porous TiCO ceramic was examined. X-ray diffraction and X-ray photoelectron spectroscopy results confirmed the formation of TiC and TiO in all samples, with an increase in the peak of TiC and a decrease in that of TiO as the Ni(NO3)2·6H2O content increased from 0% to 10%. Scanning electron microscopy results demonstrated a morphological change in the pore wall, transforming from a honeycomb-like porous structure composed of well-dispersed carbon and TiC-TiO particles to rod-shaped TiC whiskers, interconnected with each other as the catalyst content increased from 0% to 10%. Mercury intrusion porosimetry results proved a dual modal pore-size distribution of the samples, comprising nano-scale pores and micro-scale pores. The micro-scale pore size of the samples minorly changed, while the nano-scale pore size escalated from 52 nm to 138 nm as the catalyst content increased from 0 to 10%. The morphology of the pore wall and nano-scale pore size primarily influenced the compressive strength and thermal conductivity of the samples by affecting the load-bearing capability and solid heat-transfer conduction path, respectively.

15.
Clin Exp Rheumatol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530663

RESUMEN

OBJECTIVES: To explore the effectiveness of tofacitinib for immunoglobulin G4-related disease (IgG4-RD) and idiopathic retroperitoneal fibrosis (IRF), and investigate the expression of JAKs in the lesion of these diseases. METHODS: Clinical data of patients with IgG4-RD or IRF who were administered with tofacitinib monotherapy were collected. IgG4-RD responder index (IgG4-RD RI) was assessed. The expression of JAK1, JAK2, JAK3, and TYK2 were analysed with immunohistochemistry staining in three salivary glands specimens of IgG4-RD and one retroperitoneal tissue of IRF. RESULTS: Two patients with IRF and two patients with IgG4-RD used tofacitinib monotherapy. Two patients with IRF achieved complete remission with diminished retroperitoneal mass and decreased CRP, as IgG4-RD RI decreased from 6 to 1 in both of them. One with IgG4-RD achieved complete remission with alleviated enlargement of pancreas and IgG4 level decreased from 13.7 g/L to 2.4 g/L, as IgG4-RD RI decreased from 12 to 1. One with IgG4-RD achieved partial response with IgG4 level decreased from 77.1g/L to 25.8g/L as IgG4-RD RI from 18 to 6. JAK1, JAK2, JAK3, and TYK2 expression were detected in biopsy tissues. The staining intensity of the JAK family on the lesion from one IRF patient was similar to those from IgG4-RD patients. CONCLUSIONS: Tofacitinib is a potentially effective treatment for IgG4-RD and IRF and it is reasonable to conduct clinical trial to validate its efficacy. The JAKs were expressed in the inflammatory lesions of IgG4-RD and IRF and they may share a common pathogenesis pathway that is independent of IgG4 production.

16.
Sci Rep ; 14(1): 5783, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461210

RESUMEN

To investigate the clinical characteristics of Guillain-Barré syndrome (GBS) in patients with primary Sjögren's syndrome (SS). Records of patients with positive anti-SSA antibodies hospitalized in the Beijing Tiantan Hospital between December 2011 and May 2020 were retrieved. Patients who fulfilled the criteria for diagnosis of GBS and primary SS were included, and their clinical data were analyzed. Among the 785 patients with positive anti-SSA, 52 patients were identified in this study. They were 27 males and 25 females with median age of 59 years old. Besides anti-SSA antibodies, multiple autoantibodies were detected in these patients including antinuclear antibody, anti-Ro52, anti-mitochondrial M2, anti-thyroid peroxidase and anti-thyroglobulin autoantibodies. Preceding infection was reported in 42 patients. Hyporeflexia/areflexia and limbs weakness were the most common manifestation and 35 patients presented cranial nerve injuries. GBS disability score of 3, 4 and 5 was scaled in 28 (53.8%), 15 (28.8%) and 3 (5.8%) patients respectively. Forty-six patients received intravenous immunoglobulin (IVIG) monotherapy, 5 patients were treated by IVIG plus glucocorticoids, and 51 patients improved during hospitalization. The frequency of male gender among the patients with both GBS and primary SS suggests an independent onset of GBS and the co-existence of these autoimmune diseases in patients with multiple autoantibodies. Majority of patients with GBS and primary SS experience benign disease course.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Guillain-Barré , Síndrome de Sjögren , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Guillain-Barré/complicaciones , Inmunoglobulinas Intravenosas/uso terapéutico , Síndrome de Sjögren/diagnóstico , Autoanticuerpos , Enfermedades Autoinmunes/tratamiento farmacológico
17.
J Ethnopharmacol ; 326: 117988, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38428657

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY: To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS: XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS: The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS: XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Fluorouracilo , Neoplasias Gástricas , Humanos , Ratones , Animales , Fluorouracilo/toxicidad , Neoplasias Gástricas/tratamiento farmacológico , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
ACS Appl Bio Mater ; 7(3): 1763-1777, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38377541

RESUMEN

Encapsulation of plant polyphenols with micro-/nano-carriers for enhanced bioavailability has been well documented, but the preparation of these carriers and subsequent loading of polyphenols is a multiple process, which is generally complicated with potentially unexpected negative effects on the bioactivity of the polyphenols. Here, we reported a convenient method to assemble carrier-free polyphenol nanoparticles (NPs) based on oxidative coupling polymerization. The effectiveness was assessed with five different polyphenols including pyrocatechol (PY), catechin (CA), epigallocatechin gallate (EGCG), tannic acid (TA), and proanthocyanidin (PC). The structural characteristics of these assembled nanoparticles (PY NPs, CA NPs, EG NPs, TA NPs, and PC NPs) were systematically analyzed with dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR). All NPs were colloidally stable with varying NaCl concentrations from 0 to 300 mM, were acid-resistant and alkali-intolerant, and were suitable for oral administration. An array of antioxidant assays further confirmed the superior antioxidant capabilities of NPs over Trolox and polyphenol monomers, indicating that the oxidative polymerization of polyphenols did not compromise the polyphenol activity of NPs. The in vitro simulated digestion studies validated that these responsive NPs were actually gastrointestinal pH-responsive and applicable to the gastrointestinal physiological environment. The bioaccessibility assessments by using a static in vitro digestion model revealed that better results were achieved with NPs than polyphenol monomers, with TA NPs showing about 1.5-fold higher bioaccessibility than other polyphenol nanoparticles. The present study with five polyphenols demonstrated that the oxidative polymerization of polyphenols provides an effective platform to assemble various carrier-free NPs with enhanced antioxidant activity, favorable stability, and improved bioaccessibility, which could be used promisingly as a functional food ingredient in food matrices or as oral drug delivery candidates for helping to manage human health or treating various gastrointestinal disorders in both the pharmaceutical and nutritional fields.


Asunto(s)
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/química , Polimerizacion , Polifenoles/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Estrés Oxidativo
19.
Adv Healthc Mater ; 13(12): e2303297, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315874

RESUMEN

Skin injury is a common health problem worldwide, and the highly complex healing process poses critical challenges for its management. Therefore, wound dressings with salutary effects are urgently needed for wound care. However, traditional wound dressing with a single function often fails to meet the needs of wound repair, and the integration of multiple functions has been required for wound repair. Herein, Cu2+-chelated epigallocatechin gallate nanoparticles (EAC NPs), with radical scavenging, inflammation relieving, bacteria restraining, and vascularization accelerating capacities, are adopted to functionalize collagen scaffold, aiming to promote wound healing. Radical scavenging experiments verify that EAC NPs could efficiently scavenge radicals. Additionally, EAC NPs could effectively remove Escherichia coli and Staphylococcus aureus. H2O2 stimuli-responsive EAC NPs show slow and sustained release properties of Cu2+. Furthermore, EAC NPs exhibit protective effects against H2O2-induced oxidative-stress damage and anti-inflammatory activity in vivo. Physicochemical characterizations show that the introduction of EAC NPs does not disrupt the gelation behavior of collagen, and the composite scaffolds (CS) remain porous structure similar to collagen scaffold. Animal experiments demonstrate that CS could promote wound healing through improving the thickness of renascent epidermis and number of new vessels. CS with multiple salutary functions is a promising dressing for wound care.


Asunto(s)
Antibacterianos , Antiinflamatorios , Catequina , Catequina/análogos & derivados , Colágeno , Cobre , Nanopartículas , Cicatrización de Heridas , Catequina/química , Catequina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cobre/química , Cobre/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Colágeno/química , Nanopartículas/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Andamios del Tejido/química , Masculino , Neovascularización Fisiológica/efectos de los fármacos
20.
Carbohydr Polym ; 331: 121902, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388045

RESUMEN

The objective of this study was to investigate the effects of carboxymethyl chitosan (CMCS) on the stabilization and gelation of oil-in-water (O/W) Pickering emulsions (PEs) with polyphenol-amino acid particles in the presence of inorganic salts. The results revealed that the CMCS-induced depletion interactions contributed to improving the emulsification ability and interfacial adsorption efficiency of polyphenol-amino acid particles as well as constructing the network structures in the continuous phase. These relevant changes collectively resulted in elevating stability, viscosity and moduli of PEs. The additional effects of different inorganic salts with varying additions were further investigated, and the addition-dependent phenomena were observed. At low additions of inorganic salts, the occurrence of the chelation of inorganic salts with CMCS consolidated the constructed network structure, favorable to the gelation of PEs. With increasing additions, this chelation effect became stronger which compromised the CMCS-induced depletion, gradually leading to destabilization of PEs. In terms of ion species, the more pronounced effect on emulsion stability was achieved with calcium ions than with potassium and iron ions. This study expects to provide a new perspective on the extending application of cationic CMCS for improving the stability of O/W PEs in the food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA