Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Transl Cancer Res ; 13(4): 1861-1875, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737691

RESUMEN

Background: Lung adenocarcinoma (LUAD), a type of lung cancer, is one of the most aggressive and deadly malignancies worldwide. Malignant tumor cells exhibit strong anti-anoikis properties to achieve distant metastasis through the circulatory system. However, more research is needed to understand how anoikis is involved in the progression, metastasis and especially the prognosis of LUAD. Methods: We obtained anoikis-related genes (ARGs) from two websites, Harmonizome and Genecards, and integrated them to select and model the genes associated with LUAD prognosis. In addition, we investigated differences in the immune cell microenvironment and pathways of enrichment analysis between subtypes. We finally constructed a nomogram based on ARGs and used decision curve analysis (DCA) to demonstrate that this model could help clinicians make clinical decisions. Results: Sixty-four differentially expressed genes (DEGs) were found to be associated with survival, and of these, six were chosen to build a prognostic model. The time-dependent receiver operating characteristic (ROC) curves showed that the model had a satisfactory predictive ability. Enrichment analysis and immune microenvironment analysis revealed that the immune status and drug sensitivity of populations at high and low risk were different. We integrated the clinicopathological features of LUAD with the risk score to build the nomogram. The nomogram was shown to be a good predictor of short- and long-term survival in LUAD patients through DCA analysis. Conclusions: This new model based on six ARGs and nomograms in our study could help patients with LUAD develop personalized treatment plans.

2.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773146

RESUMEN

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Astrocitos , Trastorno Depresivo Mayor , Ratones Noqueados , Animales , Astrocitos/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Ratones , Humanos , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuronas/metabolismo , Estrés Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Conducta Animal , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Depresión/metabolismo , Depresión/genética , Adulto , Transmisión Sináptica , Persona de Mediana Edad
3.
Cancer Control ; 31: 10732748241237414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537151

RESUMEN

BACKGROUND: The aim of this retrospective research was to develop an immune-related genes significantly associated with m5C methylation methylation (m5C-IRGs)-related signature associated with lung adenocarainoma (LUAD). METHODS: We introduced transcriptome data to screen out m5C-IRGs in The Cancer Genome Atlas (TCGA)-LUAD dataset. Subsequently, the m5C-IRGs associated with survival were certificated by Kaplan Meier (K-M) analysis. The univariate Cox, least absolute shrinkage and selection operator (LASSO) regression, and xgboost.surv tool were adopted to build a LUAD prognostic signature. We further conducted gene functional enrichment, immune microenvironment and immunotherapy analysis between 2 risk subgroups. Finally, we verified m5C-IRGs-related prognostic gene expression in transcription level. RESULTS: A total of 76 m5C-IRGs were identified in TCGA-LUAD dataset. Furthermore, 27 m5C-IRGs associated with survival were retained. Then, a m5C-IRGs prognostic signature was build based on the 3 prognostic genes (HLA-DMB, PPIA, and GPI). Independent prognostic analysis suggested that stage and RiskScore could be used as independent prognostic factors. We found that 4104 differentially expressed genes (DEGs) between the 2 risk subgroups were mainly concerned in immune receptor pathways. We found certain distinction in LUAD immune microenvironment between the 2 risk subgroups. Then, immunotherapy analysis and chemotherapeutic drug sensitivity results indicated that the m5C-IRGs-related gene signature might be applied as a therapy predictor. Finally, we found significant higher expression of PPIA and GPI in LUAD group compared to the normal group. CONCLUSIONS: The prognostic signature comprised of HLA-DMB, PPIA, and GPI based on m5C-IRGs was established, which might provide theoretical basis and reference value for the research of LUAD. PUBLIC DATASETS ANALYZED IN THE STUDY: TCGA-LUAD dataset was collected from the TCGA (https://portal.gdc.cancer.gov/) database, GSE31210 (validation set) was retrieved from GEO (https://www.ncbi.nlm.nih.gov/geo/) database.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Estudios Retrospectivos , Adenocarcinoma del Pulmón/genética , Aprendizaje Automático , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
4.
Diagn Interv Radiol ; 30(2): 99-106, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38291975

RESUMEN

PURPOSE: The current meta-analysis aimed to compare the diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) with 18F-FDG PET/magnetic resonance imaging (MRI) in non-small cell lung cancer (NSCLC) lymph node metastasis staging. METHODS: We searched the PubMed, Web of Science, and Embase databases for relevant articles between November 1992 and September 2022. Studies evaluating the head-to-head comparison of 18F-FDG PET/CT and 18F-FDG PET/MRI for lymph node metastasis in patients with NSCLC were included. The quality of each study was assessed using the Quality Assessment of Diagnostic Performance Studies-2 tool. RESULTS: The analysis includes six studies with a total of 434 patients. The pooled sensitivity of 18F-FDG PET/CT and 18F-FDG PET/MRI was 0.78 [95% confidence interval (CI): 0.59-0.90] and 0.84 (95% CI: 0.68-0.93), and the pooled specificity was 0.87 (95% CI: 0.72-0.94) and 0.87 (95% CI: 0.80-0.92), respectively. The accuracy of 18F-FDG PET/CT and 18F-FDG PET/MRI was 0.81 (95% CI: 0.71-0.90) and 0.84 (95% CI: 0.75-0.92), respectively. When the pre-test probability was set at 50%, the post-test probability for 18F-FDG PET/CT could increase to 85%, and the post-test probability for 18F-FDG PET/MRI could increase to 87%. CONCLUSION: 18F-FDG PET/CT and 18F-FDG PET/MRI have similar diagnostic performance in detecting lymph node metastasis in NSCLC. However, the results of this study were from a small sample study, and further studies with larger sample sizes are needed.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Fluorodesoxiglucosa F18 , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/secundario , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Metástasis Linfática/diagnóstico por imagen , Radiofármacos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Sensibilidad y Especificidad , Imagen por Resonancia Magnética/métodos , Estadificación de Neoplasias
5.
Jpn J Radiol ; 42(1): 87-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37566187

RESUMEN

PURPOSE: This meta-analysis evaluated the diagnostic accuracy and diagnostic value of [18F]FDG PET/MRI for mediastinal lymph node staging of NSCLC. METHODS: Relevant articles in PubMed, Embase, Web of Science, and the Cochrane Library were searched until January 2023. Research evaluating [18F]FDG PET/MRI for mediastinal lymph node staging of NSCLC was included. Pooled estimates of sensitivity, specificity, PLR, and NLR were calculated by the "Stata" software. RESULTS: Nine researches were included, containing 618 patients. The pooled sensitivity of [18F]FDG PET/MRI for detecting mediastinal lymph node staging of NSCLC was 0.82 (0.70-0.90), and the pooled specificity was 0.88 (0.82-0.93). PLR and NLR were 7.38 (4.73-11.52) and 0.20 (0.11-0.36), respectively. The AUC value of this imaging modality was 0.92 (0.90-0.94). The post-test probability for [18F]FDG PET/MRI might rise to 88% when the pre-test probability was set at 50%. CONCLUSIONS: We considered [18F]FDG PET/MRI as an effective imaging tool with relatively high specificity and sensitivity. It has great potential to be used in the clinical management of patients in NSCLC who are amenable to early surgery. More studies with large sample sizes in the same direction are needed in future to obtain more reliable evidence-based support.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Metástasis Linfática/diagnóstico por imagen , Sensibilidad y Especificidad , Tomografía de Emisión de Positrones/métodos , Ganglios Linfáticos/patología , Imagen por Resonancia Magnética , Estadificación de Neoplasias , Radiofármacos
6.
Front Neurol ; 14: 1285662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099066

RESUMEN

Objective: Brain radiotherapy often results in impairment of hypothalamic-pituitary (HT-P) function, which in turn causes secretory dysfunction of related hormones. In this paper, the frequency of metastasis in the HT-P area and its high-risk factors in patients with brain metastasis were retrospectively analyzed, and thus provide experimental evidence for protecting HT-P area during whole brain radiotherapy (WBRT). Methods: A retrospective analysis was performed on the data of patients with brain metastasis diagnosed by cranial magnetic resonance imaging (MRI) at the First Hospital of Lanzhou University from 2017 to 2020. The anatomical positions of the hypothalamus and pituitary were delineated, followed by their expansion by 5 mm outwards, respectively, in the three-dimensional direction, and the hypothalamus +5 mm and pituitary +5 mm were obtained as the avoidance area, in which the frequency of brain metastasis was evaluated. Univariate and multivariate logistic regression models were used to analyze the high risk factors of brain metastasis in HT-P area. Results: A total of 3,375 brain metastatic lesions from 411 patients were included in the analysis. The rates of brain metastasis in the hypothalamus +5 mm and pituitary +5 mm in the whole group of cases were 2.9% (12/411) and 1.5% (6/411) respectively; the frequency of lesions was 0.4% (13/3375) and 0.2% (6/3375) respectively. Univariate and multivariate analyses showed that the number of brain metastases (OR = 14.946; 95% CI = 4.071-54.880; p < 0.001), and the occurrence of brain metastasis in the pituitary (OR = 13.331; 95% CI = 1.511-117.620; p = 0.020) were related to brain metastasis in the hypothalamus, and that the only relevant factor for brain metastasis in the pituitary was the occurrence of that in the hypothalamus (OR = 0.069; 95% CI = 0.010-0.461; p = 0.006). There was no correlation between tumor pathological types, the maximum diameter, the total volume of brain metastatic lesions and the risk of brain metastasis in hypothalamus and pituitary. Conclusion: The frequency of brain metastasis in the HT-P area is extremely low. The risk of brain metastases in the hypothalamus is correlated with their number. The larger the number of metastatic lesions, the higher the frequency of brain metastasis. Protection of the HT-P area during WBRT may be unlikely to compromise the tumor recurrence rate for patients with a relatively small number of brain metastases.

7.
Pharmacol Res ; 198: 107016, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006980

RESUMEN

The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.


Asunto(s)
Inflamasomas , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Aniones/metabolismo , Mitocondrias/metabolismo
8.
PLoS One ; 18(6): e0287328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37319180

RESUMEN

Both the number of dust explosion accidents and the resulting number of casualties have increased dramatically in recent years. To reduce this risk of dust explosions, we use the functional resonance analysis method (FRAM) to analyze the cause of the dust explosion accident at the Kunshan factory and propose barrier measures to prevent such accidents. The functional units that changed in the production system during the accident and how these functional units coupled to eventually cause the dust explosion were examined and explained. In addition, barrier measures were developed for functional units that changed during production and emergency systems defined to block the propagation of changes between functions and prevent resonance. Through case study, the identification of key functional parameters in both triggering the initial explosion and in then allowing its spread are key to define barriers to prevent a recurrence of such an event. FRAM uses system function coupling instead of traditional linear causality to explain the accident process, and develops barrier measures for changing function units, providing a novel thinking strategy and method for the analysis of accidents and their prevention.


Asunto(s)
Traumatismos por Explosión , Quemaduras , Humanos , Explosiones/prevención & control , Polvo , Accidentes de Trabajo , Aluminio
9.
J Gastrointest Oncol ; 14(2): 544-553, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37201068

RESUMEN

Background: Esophageal cancer (EC) is one of the most common malignant tumor types. Surgery is considered the treatment of choice for patients with early- and mid-stage EC. However, because of the traumatic nature of EC surgery and the need for gastrointestinal reconstruction, high rates of postoperative complications such as anastomotic leakage or stenosis, esophageal reflux, and pulmonary infection exist. Its time to explore a novel esophagogastric anastomosis method for McKeown EC surgery to reduce the postoperative complication. Methods: This study recruited a total of 544 patients who underwent McKeown resection for EC between January 2017 and August 2020. The tubular stapler-assisted nested anastomosis was taken as the time node, including 212 patients in the traditional tubular mechanical anastomosis group and 332 patients in the tubular stapler-assisted nested anastomosis group. The 6-month postoperative incidence of anastomotic fistula and anastomotic stenosis was recorded. Anastomosis in McKeown operation for EC and the influence of different anastomosis methods on clinical efficacy were investigated. Results: Compared with traditional mechanical anastomosis, tubular stapler-assisted nested anastomosis had a lower incidence of anastomotic fistula (0% vs. 5.2%), lung infection (3.3% vs. 11.8%), gastroesophageal reflux (6.9% vs. 16.0%), anastomotic stenosis (3.0% vs. 10.4%), neck incision infection (0.9% vs. 7.1%), anastomositis (16.6% vs. 23.6%), and a shorter surgical duration (11.02±1.54 vs. 18.53±3.20 min). Statistical significance was indicated at P<0.05. No significant difference was detected in the incidence of arrhythmia, recurrent laryngeal nerve injury, or chylothorax between the 2 groups. Due to its good effect in McKeown surgery for EC, stapler-assisted nested anastomosis has been widely used in McKeown surgery for EC, and has become a common anastomosis method in our department for McKeown surgery for EC. However, large sample-sized studies and long-term efficacy observation are still needed. Conclusions: The use of tubular stapler-assisted nested anastomosis can significantly reduce the incidence of complications such as anastomotic fistula, anastomotic stricture, gastroesophageal reflux, and pulmonary infection; therefore, it constitutes the preferred technique for cervical anastomosis in McKeown esophagogastrectomy.

10.
Sci Rep ; 13(1): 7212, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137877

RESUMEN

Various plants, including sorghum (Sorghum bicolor L.), are exposed to waterlogging; however, little is known about the effects of waterlogging at different growth stages on sorghum. A pot experiment was conducted using two sorghum hybrids, Jinuoliang 01 (JN01) and Jinza 31 (JZ31), to investigate the effects of waterlogging at different growth stages on the photosynthesis enzyme activity, chlorophyll content, malondialdehyde (MDA) content, photosynthetic parameters, dry matter accumulation, and grain yield. The experiment was conducted using waterlogging treatments implemented at the five-leaf stage (T1), flowering stage (T2), and filling stage (T3), using standard management (no waterlogging) as a control (CK). The adverse effects of waterlogging on sorghum growth varied with the waterlogging timing, with the maximum impact at T1, followed by T2 and T3. JZ31 was more sensitive to waterlogging compared to JN01. Waterlogged conditions inhibited the photosynthetic enzyme activity and reduced the chlorophyll content and photosynthesis, ultimately lowering the biomass yield and grain yield. The maximum yield loss was observed with the T1 waterlogging treatment; the grain yield of JN01 and JZ31 decreased by 52.01-54.58% and 69.52-71.97%, respectively, compared with CK. Furthermore, the decline in grain yield in T1 was associated with reducing grain number per panicle. These findings indicate that sorghum is sensitive to waterlogging at the five-leaf stage and JZ31 is more sensitive to waterlogging than JN01, which may provide a basis for selecting genotypes and management measures to cope with waterlogging in sorghum.


Asunto(s)
Cambio Climático , Sorghum , Sorghum/crecimiento & desarrollo , Hojas de la Planta/química , Clorofila/análisis , Ribulosa-Bifosfato Carboxilasa/análisis , Fosfoenolpiruvato Carboxilasa/análisis , Fotosíntesis , Biomasa , Agricultura/métodos
11.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757814

RESUMEN

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte-specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Ratones , Animales , Astrocitos/metabolismo , Depresión/genética , Transmisión Sináptica , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Antidepresivos , Glucosa , Acetilglucosamina/metabolismo
12.
JTCVS Tech ; 16: 139-148, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36510546

RESUMEN

Objectives: Localization of pulmonary nodules is challenging. However, traditional localization methods have high radiation doses and a high risk of complications. We developed a noninvasive 3-dimensional printing navigational template for intraoperative localization. It can reduce puncture-related complications and simplify the localization process. This study will verify the feasibility of this method. Methods: Patients with peripheral pulmonary nodules were included in this study. The computed tomography scan sequences were obtained to design a digital template model, which was then imported into a 3-dimensional printer to produce a physical navigational template. Finally, the navigational template is placed into the patient's pleural cavity for intraoperative localization. The precision of the nodule localization and associated complications were evaluated. Results: Twelve patients were finally included in this study. Intraoperative navigational template localization was used in all patients. The success rate of intraoperative nodule localization was 100%, and the median time of localization was 19.5 minutes (range, 16-23.5 minutes). The deviation median of the navigational template was 2.1 mm (range, 1.1-2.7 mm). Among the included patients, no significant complications occurred during intraoperative localization. Conclusions: The 3-dimensional printing template for intraoperative localization is feasible, will cause no trauma to the patient, and has acceptable accuracy for application in nodules localization. This navigational template greatly simplifies the localization process and may potentially break the dependence of percutaneous localization on computed tomography scanning.

13.
Medicine (Baltimore) ; 101(50): e31980, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36550809

RESUMEN

This study aimed to explore the effects of the 3 nucleos(t)ide analogues (NAs) on lipid levels. We retrospectively included patients treated with NAs at 2 centers and collected their clinical data at their visiting points. Differences in blood lipid levels were analyzed by statistical methods, and factors related to hyperlipidemia were discussed. In these 2 centers, the prevalence rates of hypercholesterolemia were 12/181 (6.6%) for tenofovir alafenamide fumarate (TAF)-, 0/158 (0%) for tenofovir disoproxil fumarate (TDF)-, and 13/182 (7.1%) for entecavir (ETV)-treated individuals (P = .003). The prevalence rates of hypertriglyceridemia were 30/181 (16.6%) for TAF-, 11/158 (7.0%) for TDF-, and 26/182 (14.3%) for ETV-treated individuals (P = .025). In TAF (n = 181, 10 [6, 15] months), TDF (n = 158, 18 [7.5, 45] months), and ETV (n = 182, 24 [10, 60] months) groups, total cholesterol (TC) levels were 4.63 ±â€…0.91 mmol/L, 3.86 ±â€…0.61 mmol/L, and 4.53 ±â€…0.87 mmol/L, respectively; triglyceride (TG) levels were 1.27 ±â€…0.76 mmol/L, 0.87 ±â€…0.51 mmol/L, and 1.14 ±â€…0.67 mmol/L, respectively (P < .001). In multivariate regression analysis, factors associated with hypercholesterolemia were age (adjusted hazard risk [HR] = 1.055 [1.018-1.094]; P = .003) and body mass index (BMI) (adjusted HR = 0.817 [0.669-0.998]; P = .048). Factors associated with hypertriglyceridemia were TAF group (vs. TDF group) (adjusted HR = 0.405 [0.167-0.980]; P = .045), age (adjusted HR = 1.028 [1.002-1.055]; P = .038), and sex (adjusted HR = 0.190 [0.079-0.456]; P < .001). Among the patients treated with TAF (10 [6, 15] months), TDF (18 [7.5, 45] months), and ETV (24 [10, 60] months), the blood lipid levels in the TDF group were lower than those in the TAF group and ETV group, and the occurrence of hyperlipidemia was associated with age, sex, BMI, and different treatment.


Asunto(s)
Hepatitis B Crónica , Hipercolesterolemia , Hipertrigliceridemia , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/epidemiología , Antivirales/uso terapéutico , Estudios Transversales , Estudios Retrospectivos , Hipercolesterolemia/tratamiento farmacológico , Resultado del Tratamiento , Tenofovir/uso terapéutico , Adenina , Lípidos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/epidemiología
14.
Sci Adv ; 8(46): eabo2098, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383661

RESUMEN

Major depressive disorder (MDD) is a devastating mental disorder that affects up to 17% of the population worldwide. Although brain-wide network-level abnormalities in MDD patients via resting-state functional magnetic resonance imaging (rsfMRI) exist, the mechanisms underlying these network changes are unknown, despite their immense potential for depression diagnosis and management. Here, we show that the astrocytic calcium-deficient mice, inositol 1,4,5-trisphosphate-type-2 receptor knockout mice (Itpr2-/- mice), display abnormal rsfMRI functional connectivity (rsFC) in depression-related networks, especially decreased rsFC in medial prefrontal cortex (mPFC)-related pathways. We further uncover rsFC decreases in MDD patients highly consistent with those of Itpr2-/- mice, especially in mPFC-related pathways. Optogenetic activation of mPFC astrocytes partially enhances rsFC in depression-related networks in both Itpr2-/- and wild-type mice. Optogenetic activation of the mPFC neurons or mPFC-striatum pathway rescues disrupted rsFC and depressive-like behaviors in Itpr2-/- mice. Our results identify the previously unknown role of astrocyte dysfunction in driving rsFC abnormalities in depression.

15.
Cell Signal ; 100: 110468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36115548

RESUMEN

Mutations of Tsc1 or Tsc2 can lead to excessive activation of mTORC1 and cause Tuberous Sclerosis Complex (TSC), which is an autosomal dominant genetic disease prominently characterized by seizures, mental retardation and multiorgan hamartoma. In TSC, pathological changes in the central nervous system are the leading cause of death and disability. In decades, series of rodent models have been established by mutating Tsc1 or Tsc2 genes in diverse neural cell lineages to investigate the underlying cellular and molecular mechanisms, however, the cellular origin triggering neural pathological changes in TSC is undetermined. In this study, we generated a novel mouse model involving conditional deletion of Tsc1 in lysozyme 2 (Lyz2)-positive cells which replicated several features of brain lesions including epileptic seizures, megalencephaly, highly enlarged pS6-positive neurons and astrogliosis. In addition, we confirmed that bone marrow-derived myeloid cells including microglia with Tsc1 deficiency are not the decisive lineage in the cerebral pathologies in TSC. These histological assays in our murine model indicate an essential contribution of Lyz2-positive neurons to TSC progression. The Lyz2-positive neural population-specific onset of Tsc1 loss in murine postnatal brain might be the key to pathological phenotypes. Our findings thus provided evidences supporting new insights into the role of Lyz2-positive neurons in TSC events.

16.
Theranostics ; 12(8): 3703-3718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664080

RESUMEN

Rationale: Stress is a major risk factor for the development of depression. However, the underlying molecular mechanisms of stress vulnerability in depression are largely uncharacterized. Methods: P2X2 receptors (a major receptor for gliotransmitter-ATP) in the medial prefrontal cortex (mPFC) were identified by real-time qPCR, western blots and RNAscope in situ hybridization in chronic social defeat stress model (CSDS). We generated P2X2 conditional knockout mice and overexpressed AAV-P2X2 in CamkIIα-Cre mice. The depression-like behaviors were assessed via CSDS, subthreshold social defeat stress (SSDS), social interaction test (SI), forced interaction test (FIT), forced swimming test (FST), sucrose preference test (SPT), novel stressed feeding (NSF) and open field test (OFT). The neuronal activity and synapse function of P2X2 receptors in the mPFC were detected by in vivo fiber-photometry, patch-clamp techniques and neuronal morphometric analysis. Results: We identified that P2X2 receptors were increased in the mPFC of susceptible mice in CSDS. Conditional knockout of P2X2 receptors in pyramidal neurons promoted resilience of chronic stress-induced depressive-like behaviors, whereas pyramidal neurons - specific gain of P2X2 in the mPFC increased vulnerability to depressive-like behaviors. In vivo fiber-photometry, electrophysiology and neuronal morphometric analysis showed P2X2 receptors regulated neuronal activity and synapse function in the mPFC. Conclusions: Overall, our studies reveal a critical role of P2X2 in mediating vulnerability to chronic stress and identify P2X2 as a potential therapeutic target for treatment of stress-related mood disorders.


Asunto(s)
Células Piramidales , Estrés Psicológico , Animales , Ratones , Ratones Endogámicos C57BL , Neuronas , Receptores Purinérgicos P2X2
17.
Mol Neurobiol ; 59(7): 4030-4043, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35467259

RESUMEN

Epidemiological studies suggest a bidirectional association between depression and obesity; however, the biological mechanisms that link the development of depression to a metabolic disorder remain unclear. Even though nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) agonists show anti-depressive effect, and high-fat diet-(HFD)-induced PPARγ dysfunction is involved in the pathogenesis of metabolic disorders, the neuronal PPARγ has never been studied in HFD-induced depression. Thus, we aimed to investigate the effect of neuronal PPARγ on depressive-like behaviors in HFD-induced obese mice.We fed male C57BL/6 J mice with HFD to generate obese mice and conducted a series of behavioral tests to assess the effects of HFD feeding on depression. We generated neuron-specific PPARγ knockout mice (NKO) to determine whether neuronal PPARγ deficiency was correlated with depressive-like behaviors. To further prove whether PPARγ in the medial prefrontal cortex (mPFC) neurons is involved in depressive-like behaviors, we applied AAV- CaMKIIα-Cre approach to specifically knockout PPARγ in the mPFC neurons of LoxP mice and used AAV-syn-PPARγ vectors to overexpress PPARγ in the mPFC neurons of NKO mice.We observed a low mPFC PPARγ level and an increase in depressive-like behaviors in the HFD-fed mice. Moreover, neuronal-specific PPARγ deficiency in mice induced depressive-like behaviors, which could be abolished by imipramine. Furthermore, overexpressing PPARγ in the mPFC reversed the depressive-like behaviors in HFD-fed mice as well as in neuronal-specific PPARγ knockout mice.These results implicate that dysregulation of neuronal PPARγ in the mPFC may contribute to an increased risk for depression in obese populations.


Asunto(s)
Dieta Alta en Grasa , PPAR gamma , Animales , Depresión/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , PPAR gamma/metabolismo , Corteza Prefrontal/metabolismo
18.
J Neurosci ; 42(11): 2356-2370, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35105676

RESUMEN

Anxiety disorders are debilitating psychiatric diseases that affect ∼16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids (PUFAs), and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST; sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENT Soluble epoxide hydrolase (sEH), a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in central nucleus of the amygdala (CeA) neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-bed nucleus of the stria terminalis (BNST) pathway in regulation of anxiety-related behaviors.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Septales , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/psicología , Núcleo Amigdalino Central/metabolismo , Núcleos Cerebelosos/metabolismo , Epóxido Hidrolasas , Humanos , Masculino , Ratones , Núcleos Septales/fisiología
19.
Biol Psychiatry ; 92(3): 204-215, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151464

RESUMEN

BACKGROUND: Major depressive disorder is a devastating psychiatric illness that affects approximately 17% of the population worldwide. Astrocyte dysfunction has been implicated in its pathophysiology. Traumatic experiences and stress contribute to the onset of major depressive disorder, but how astrocytes respond to stress is poorly understood. METHODS: Using Western blotting analysis, we identified that stress vulnerability was associated with reduced astrocytic glucocorticoid receptor (GR) expression in mouse models of depression. We further investigated the functions of astrocytic GRs in regulating depression and the underlying mechanisms by using a combination of behavioral studies, fiber photometry, biochemical experiments, and RNA sequencing methods. RESULTS: GRs in astrocytes were more sensitive to stress than those in neurons. GR absence in astrocytes induced depressive-like behaviors, whereas restoring astrocytic GR expression in the medial prefrontal cortex prevented the depressive-like phenotype. Furthermore, we found that GRs in the medial prefrontal cortex affected astrocytic Ca2+ activity and dynamic ATP (adenosine 5'-triphosphate) release in response to stress. RNA sequencing of astrocytes isolated from GR deletion mice identified the PI3K-Akt (phosphoinositide 3-kinase-Akt) signaling pathway, which was required for astrocytic GR-mediated ATP release. CONCLUSIONS: These findings reveal that astrocytic GRs play an important role in stress response and that reduced astrocytic GR expression in the stressed subject decreases ATP release to mediate stress vulnerability.


Asunto(s)
Astrocitos , Trastorno Depresivo Mayor , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Glucocorticoides/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glucocorticoides/metabolismo
20.
Front Mol Neurosci ; 14: 729975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803603

RESUMEN

The medial prefrontal cortex (mPFC), a key part of the brain networks that are closely related to the regulation of behavior, acts as a key regulator in emotion, social cognition, and decision making. Astrocytes are the majority cell type of glial cells, which play a significant role in a number of processes and establish a suitable environment for the functioning of neurons, including the brain energy metabolism. Astrocyte's dysfunction in the mPFC has been implicated in various neuropsychiatric disorders. Glucose is a major energy source in the brain. In glucose metabolism, part of glucose is used to convert UDP-GlcNAc as a donor molecule for O-GlcNAcylation, which is controlled by a group of enzymes, O-GlcNAc transferase enzyme (OGT), and O-GlcNAcase (OGA). However, the role of O-GlcNAcylation in astrocytes is almost completely unknown. Our research showed that astrocytic OGT could influence the expression of proteins in the mPFC. Most of these altered proteins participate in metabolic processes, transferase activity, and biosynthetic processes. GFAP, an astrocyte maker, was increased after OGT deletion. These results provide a framework for further study on the role of astrocytic OGT/O-GlcNAcylation in the mPFC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...