Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(21): 8705-8712, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717967

RESUMEN

Water pollution originating from heavy metals has shown great impacts on the ecological environment and human health due to their extremely low biodegradability. Hexavalent chromium Cr(VI), as one harmful heavy metal with strong oxidation, high biological permeability, and high carcinogenicity, is becoming an increasingly serious threat to human health. Therefore, conveniently but accurately, monitoring the Cr(VI) level in water to maintain its normal level and ensuring the stability of the ecosystem and human health become very valuable. However, most of these heavy metal sensors reported are turn-off type single-emission sensors. In this work, a ratiometric fluorescence/colorimetry/smartphone triple-mode turn-on optical sensor for Cr(VI) was developed based on a multifunctional metal-organic framework platform. The detection limits for these three mutual verification modes were only 1.28, 4.89, and 68.4 nM, respectively. Additionally, the color changes of the detection system under sunlight can also be observed directly by the naked eye. The accuracy and practicability of this multimode sensor were further proved by the detection of Cr(VI) in actual water and seawater samples, and the recovery rate ranged from 97.308 to 104.041%.

2.
Front Microbiol ; 14: 1287582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075866

RESUMEN

Introduction: Endophytic microorganisms are bacteria or fungi that inhabit plant internal tissues contributing to various biological processes of plants. Some endophytic microbes can promote plant growth, which are known as plant growth-promoting endophytes (PGPEs). There has been an increasing interest in isolation and identification of PGPEs for sustainable production of crops. This study was undertaken to isolate PGPEs from roots of a halophytic species Sesuvium portulacastrum L. and elucidate potential mechanisms underlying the plant growth promoting effect. Methods: Surface-disinfected seeds of S. portulacastrum were germinated on an in vitro culture medium, and roots of some germinated seedlings were contaminated by bacteria and fungi. From the contamination, an endophytic fungus called BF-F (a fungal strain isolated from bacterial and fungal contamination) was isolated and identified. The genome of BF-F strain was sequenced, its genome structure and function were analyzed using various bioinformatics software. Additionally, the effect of BF-F on plant growth promotion were investigated by gene cluster analyses. Results: Based on the sequence homology (99%) and phylogenetic analysis, BF-F is likely a new Cladosporium angulosum strain or possibly a new Cladosporium species that is most homologous to C. angulosum. The BF-F significantly promoted the growth of dicot S. portulacastrum and Arabidopsis as well as monocot rice. Whole genome analysis revealed that the BF-F genome has 29,444,740 bp in size with 6,426 annotated genes, including gene clusters associated with the tryptophan synthesis and metabolism pathway, sterol synthesis pathway, and nitrogen metabolism pathway. BF-F produced indole-3-acetic acid (IAA) and also induced the expression of plant N uptake related genes. Discussion: Our results suggest that BF-F is a novel strain of Cladosporium and has potential to be a microbial fertilizer for sustainable production of crop plants. The resulting genomic information will facilitate further investigation of its genetic evolution and its function, particularly mechanisms underlying plant growth promotion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA