Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0090524, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727220

RESUMEN

Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.

2.
Virol Sin ; 38(6): 922-930, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839549

RESUMEN

As one of the deadliest viruses, Ebola virus (EBOV) causes lethal hemorrhagic fevers in humans and nonhuman primates. The suppression of innate immunity leads to robust systemic virus replication of EBOV, leading to enhanced transmission. However, the mechanism of EBOV-host interaction is not fully understood. Here, we identified multiple dysregulated genes in early stage of EBOV infection through transcriptomic analysis, which are highly clustered to Jak-STAT signaling. EBOV VP35 and VP30 were found to inhibit type I interferon (IFN) signaling. Moreover, exogenous expression of VP35 blocks the phosphorylation of endogenous STAT1, and suppresses nuclear translocation of STAT1. Using serial truncated mutations of VP35, N-terminal 1-220 amino acid residues of VP35 were identified to be essential for blocking on type I IFN signaling. Remarkably, VP35 of EBOV suppresses type I IFN signaling more efficiently than those of Bundibugyo virus (BDBV) and Marburg virus (MARV), resulting in stable replication to facilitate the pathogenesis. Altogether, this study enriches understanding on EBOV evasion of innate immune response, and provides insights into the interplay between filoviruses and host.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Interferón Tipo I , Humanos , Animales , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Inmunidad Innata , Ebolavirus/genética , Replicación Viral
3.
Vet Res ; 54(1): 87, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789420

RESUMEN

Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α, TH1 cells), whereas infection by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13, TH2 cells). In some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of subsequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-mediated immunity on the outcome of SARS-CoV-2 disease.


Asunto(s)
COVID-19 , Helmintiasis , Helmintos , Humanos , Animales , COVID-19/veterinaria , SARS-CoV-2 , Helmintos/fisiología , Helmintiasis/parasitología , Bacterias , Células Th2
4.
Microbiol Spectr ; 11(3): e0307922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37014208

RESUMEN

Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells. IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Ratones , Virus de la Rabia/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Autofagia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proliferación Celular
5.
Virol Sin ; 37(6): 796-803, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182073

RESUMEN

During the two-year pandemic of coronavirus disease 2019 (COVID-19), its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been evolving. SARS-CoV-2 Delta, a variant of concern, has become the dominant circulating strain worldwide within just a few months. Here, we performed a comprehensive analysis of a new B.1.617.2 Delta strain (Delta630) compared with the early WIV04 strain (WIV04) in vitro and in vivo, in terms of replication, infectivity, pathogenicity, and transmission in hamsters. When inoculated intranasally, Delta630 led to more pronounced weight loss and more severe disease in hamsters. Moreover, 40% mortality occurred about one week after infection with 104 â€‹PFU of Delta630, whereas no deaths occurred even after infection with 105 â€‹PFU of WIV04 or other strains belonging to the Delta variant. Moreover, Delta630 outgrew over WIV04 in the competitive aerosol transmission experiment. Taken together, the Delta630 strain showed increased replication ability, pathogenicity, and transmissibility over WIV04 in hamsters. To our knowledge, this is the first SARS-CoV-2 strain that causes death in a hamster model, which could be an asset for the efficacy evaluation of vaccines and antivirals against infections of SARS-CoV-2 Delta strains. The underlying molecular mechanisms of increased virulence and transmission await further analysis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Virulencia , Aerosoles y Gotitas Respiratorias
6.
Viruses ; 13(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209472

RESUMEN

West Nile virus disease (WND) is an arthropod-borne zoonosis responsible for nonspecific fever or severe encephalitis. The pathogen is West Nile virus belonging to the genus Flavivirus, family Flaviviridae. Every year, thousands of cases were reported, which poses significant public health risk. Here, we constructed a West Nile virus chimera, ChiVax-WN01, by replacing the prMΔE gene of JEV SA14-14-2 with that of the West Nile virus NY99. The ChiVax-WN01 chimera showed clear, different characters compared with that of JEV SA14-14-2 and WNV NY99 strain. An animal study indicated that the ChiVax-WN01 chimera presented moderate safety and immunogenicity for 4-week female BALB/c mice.


Asunto(s)
Quimera , Virus de la Encefalitis Japonesa (Especie)/genética , Virus del Nilo Occidental/genética , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Femenino , Ratones , Ratones Endogámicos BALB C , Virulencia , Virus del Nilo Occidental/patogenicidad
8.
PLoS Negl Trop Dis ; 15(6): e0009484, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086672

RESUMEN

The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congenital Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain (TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E replaced with the region of RABV G). When the TM of prM-E was replaced with the region of RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G (termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least 10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6 were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of splenic lymphocytes and promoted the secretion of cytokines. It also promoted the production of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell activation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral and cellular immune responses, which have the potential to be developed into a promising vaccine for protection against both ZIKV and RABV infections.


Asunto(s)
Virus de la Rabia/genética , Rabia/prevención & control , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Rabia/inmunología , Rabia/virología , Virus de la Rabia/inmunología , Linfocitos T/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
10.
Front Cell Infect Microbiol ; 11: 820144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35198456

RESUMEN

A feline panleukopenia virus (FPV), Giant panda/CD/2018, was isolated from a captive giant panda with mild diarrhea in 2018 in Chengdu, China, and further identified via indirect immunofluorescence assay (IFA), transmission electron microscopy (TEM) observation, and genetic analysis. Phylogenetic analysis based on the complete VP2 nucleotide sequences showed that it shared high homology with Chinese FPV isolates and grouped within FPV cluster 1. One unique substitution Gly(G)299Glu(E) in the capsid protein VP2 was first identified with Giant panda/CD/2018. The presence of the G299E substitution is notable as it is located on the top region of the interconnecting surface loop 3, which may be involved in controlling the host range and antigenicity of FPV. These findings first demonstrate that FPV with natural point mutation G299E in the VP2 gene is prevalent in giant panda and suggest that etiological surveillance and vaccination among all giant pandas are urgently needed to protect this endangered species against FPV infection.


Asunto(s)
Virus de la Panleucopenia Felina , Infecciones por Parvoviridae , Ursidae , Animales , Animales de Zoológico/virología , Proteínas de la Cápside/genética , China/epidemiología , Diarrea/veterinaria , Diarrea/virología , Virus de la Panleucopenia Felina/genética , Infecciones por Parvoviridae/veterinaria , Filogenia , Ursidae/virología
11.
Front Microbiol ; 11: 590732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281787

RESUMEN

Rift Valley fever (RVF) is a severe infectious disease, which can through mosquito bites, direct contact and aerosol transmission infect sheep, goats, people, camels, cattle, buffaloes, and so on. In this paper, a conserved region of the S RNA segment of Rift Valley fever virus (RVFV) ZH501 strain was used as target sequence. The RVFV RT-LAMP-VF assay was successfully established combined reverse transcription-loop-mediated isothermal amplification with a vertical flow visualization strip. The detection limit is up to 1.94 × 100 copies/µl of synthesized RVFV-RNA. RNA extracted from cell culture of an inactivated RVFV-BJ01 strain was also used as templates, and the detection limit is 1.83 × 103 copies/µl. In addition, there was no cross-reactivity with other viruses that can cause similar fever symptoms. The RVFV-LAMP-VF assay exhibited very high levels of diagnostic sensitivity, which had 100-fold more sensitive than RVFV real-time RT-PCR assay. Accordingly, the RVFV RT-LAMP-VF assay developed in this study is suitable for the rapid and sensitive diagnosis of RVFV without specialized equipment and can rapidly complete detection within 60 min, and the results are visible by vertical flow visualization strip within 5 min.

12.
Cell Rep ; 33(1): 108234, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32979938

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and host immune response determine coronavirus disease 2019 (COVID-19), but studies evaluating viral evasion of immune response are lacking. Here, we use unbiased screening to identify SARS-CoV-2 proteins that antagonize type I interferon (IFN-I) response. We found three proteins that antagonize IFN-I production via distinct mechanisms: nonstructural protein 6 (nsp6) binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3 (IRF3) phosphorylation, nsp13 binds and blocks TBK1 phosphorylation, and open reading frame 6 (ORF6) binds importin Karyopherin α 2 (KPNA2) to inhibit IRF3 nuclear translocation. We identify two sets of viral proteins that antagonize IFN-I signaling through blocking signal transducer and activator of transcription 1 (STAT1)/STAT2 phosphorylation or nuclear translocation. Remarkably, SARS-CoV-2 nsp1 and nsp6 suppress IFN-I signaling more efficiently than SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Thus, when treated with IFN-I, a SARS-CoV-2 replicon replicates to a higher level than chimeric replicons containing nsp1 or nsp6 from SARS-CoV or MERS-CoV. Altogether, the study provides insights on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.


Asunto(s)
Proteínas de la Cápside/metabolismo , Infecciones por Coronavirus/inmunología , Evasión Inmune , Interferón Tipo I/metabolismo , Metiltransferasas/metabolismo , Neumonía Viral/inmunología , ARN Helicasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Células A549 , Animales , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Cricetinae , Cricetulus , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Pandemias , Neumonía Viral/virología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , SARS-CoV-2 , Factores de Transcripción STAT/metabolismo , alfa Carioferinas/metabolismo
13.
NPJ Vaccines ; 4: 48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815005

RESUMEN

Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3'-UTR (ZIKV-3'UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.

14.
Viruses ; 11(12)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835785

RESUMEN

Sudan virus (SUDV) causes severe lethal hemorrhagic fever in humans and nonhuman primates. The most effective and economical way to protect against Sudan ebolavirus disease is prophylactic vaccination. However, there are no licensed vaccines to prevent SUDV infections. In this study, a bacterium-like particle (BLP)-based vaccine displaying the extracellular domain of the SUDV glycoprotein (eGP) was developed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Expression of the recombinant GEM-displayed eGP (eGP-PA-GEM) was verified by Western blotting and immunofluorescence assays. The SUDV BLPs (SBLPs), which were mixed with Montanide ISA 201VG plus Poly (I:C) combined adjuvant, could induce high SUDV GP-specific IgG titers of up to 1:40,960 and robust virus-neutralizing antibody titers reached 1:460. The SBLP also elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. These data indicate that the SBLP subunit vaccine has the potential to be developed into a promising candidate vaccine against SUDV infections.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Celular , Inmunidad Humoral , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Baculoviridae/genética , Vectores Genéticos/genética , Fiebre Hemorrágica Ebola/prevención & control , Inmunización , Ratones , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Virales/genética , Vacunas Virales/genética
15.
Antiviral Res ; 171: 104596, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31493417

RESUMEN

Zika virus (ZIKV) has drawn global attention as the etiologic agent of Zika Congenital Syndrome in babies born to infected pregnant women. To prevent future ZIKV outbreaks and protect persons at risk for severe disease, we developed two live-attenuated vaccine (LAV) candidates containing 10- or 20-nucleotide deletions in the 3'UTR of the viral genome (Δ10 and Δ20). After a single-dose immunization, both Δ10 and Δ20 LAVs protected mice and non-human primates against ZIKV infection. Here, we characterized the stability, safety, and efficacy of the LAVs after continuously culturing them on manufacture Vero cells for ten rounds. Whole genome sequencing showed that passage 10 (P10) LAVs retained the engineered Δ10 and Δ20 deletions; one to four additional mutations emerged at different regions of the genome. In A129 mice, the P10 LAVs exhibited viremia higher than the un-passaged LAVs, but lower than wild-type ZIKV; unlike wild-type ZIKV-infected mice, none of the P10 LAV-infected mice developed disease or death, demonstrating that the P10 LAVs remained attenuated. Mice immunized with a single dose of the P10 LAVs developed robust neutralizing antibody titers (1/1,000 to 1/10,000) and were protected against epidemic ZIKV challenge. The P10 LAVs did not exhibit increased neurovirulence. Intracranial inoculation of one-day-old CD1 pups with 103 focus-forming units of the P10 Δ10 and Δ20 LAVs resulted in 100% and ≥80% survival, respectively. Furthermore, the P10 LAVs remained incompetent in infecting Aedes aegypti mosquitoes after intrathoracic microinjection. Our results support the phenotypic stability and further development of these promising LAVs for ZIKV.


Asunto(s)
Genoma Viral , Inestabilidad Genómica , Vacunas Atenuadas/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/genética , Virus Zika/inmunología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Inmunogenicidad Vacunal/genética , Inmunogenicidad Vacunal/inmunología , Ratones , Ratones Noqueados , Vacunas Atenuadas/genética , Virulencia , Factores de Virulencia , Virus Zika/patogenicidad , Infección por el Virus Zika/prevención & control
16.
Virus Genes ; 55(4): 550-556, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161411

RESUMEN

Japanese encephalitis virus SA14-14-2 (JEV SA14-14-2) is a widely used vaccine in China and other southeastern countries to prevent Japanese encephalitis in children. In this study, a stable infectious cDNA clone of JEV SA14-14-2 with a low copy number pACYC177 vector dependent on the T7 promoter and T7 terminator was developed. Two introns were inserted into the capsid gene and envelope gene of JEV cDNA for gene stability. Hepatitis delta virus ribozyme (HDVr) was engineered into the 3' UTR cDNA of JEV for authentic 3' UTR transcription. The rescued virus showed biological properties indistinguishable from those of the parent strain (JEV SA14-14-2). The establishment of a JEV SA14-14-2 reverse genetics system lays the foundation for the further development of other flavivirus vaccines and viral pathogenesis studies.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Genética Inversa/métodos , Línea Celular , ADN Complementario , ADN Viral , Virus de la Encefalitis Japonesa (Especie)/ultraestructura , Vectores Genéticos , Genoma Viral , Regiones Promotoras Genéticas , Secuenciación del Exoma
17.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541860

RESUMEN

Ebola virus (EBOV) infections result in aggressive hemorrhagic fever in humans, with fatality rates reaching 90% and with no licensed specific therapeutics to treat ill patients. Advances over the past 5 years have firmly established monoclonal antibody (MAb)-based products as the most promising therapeutics for treating EBOV infections, but production is costly and quantities are limited; therefore, MAbs are not the best candidates for mass use in the case of an epidemic. To address this need, we generated EBOV-specific polyclonal F(ab')2 fragments from horses hyperimmunized with an EBOV vaccine. The F(ab')2 was found to potently neutralize West African and Central African EBOV in vitro Treatment of nonhuman primates (NHPs) with seven doses of 100 mg/kg F(ab')2 beginning 3 or 5 days postinfection (dpi) resulted in a 100% survival rate. Notably, NHPs for which treatment was initiated at 5 dpi were already highly viremic, with observable signs of EBOV disease, which demonstrated that F(ab')2 was still effective as a therapeutic agent even in symptomatic subjects. These results show that F(ab')2 should be advanced for clinical testing in preparation for future EBOV outbreaks and epidemics.IMPORTANCE EBOV is one of the deadliest viruses to humans. It has been over 40 years since EBOV was first reported, but no cure is available. Research breakthroughs over the past 5 years have shown that MAbs constitute an effective therapy for EBOV infections. However, MAbs are expensive and difficult to produce in large amounts and therefore may only play a limited role during an epidemic. A cheaper alternative is required, especially since EBOV is endemic in several third world countries with limited medical resources. Here, we used a standard protocol to produce large amounts of antiserum F(ab')2 fragments from horses vaccinated with an EBOV vaccine, and we tested the protectiveness in monkeys. We showed that F(ab')2 was effective in 100% of monkeys even after the animals were visibly ill with EBOV disease. Thus, F(ab')2 could be a very good option for large-scale treatments of patients and should be advanced to clinical testing.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Fragmentos Fab de Inmunoglobulinas/inmunología , Macaca mulatta/virología , Animales , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/veterinaria , Caballos/inmunología , Inmunización , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Inmunoterapia/métodos
18.
Front Microbiol ; 9: 1101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896174

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that can cause human respiratory disease. The development of a detection method for this virus that can lead to rapid and accurate diagnosis would be significant. In this study, we established a nucleic acid visualization technique that combines the reverse transcription loop-mediated isothermal amplification technique and a vertical flow visualization strip (RT-LAMP-VF) to detect the N gene of MERS-CoV. The RT-LAMP-VF assay was performed in a constant temperature water bath for 30 min, and the result was visible by the naked eye within 5 min. The RT-LAMP-VF assay was capable of detecting 2 × 101 copies/µl of synthesized RNA transcript and 1 × 101 copies/µl of MERS-CoV RNA. The method exhibits no cross-reactivities with multiple CoVs including SARS-related (SARSr)-CoV, HKU4, HKU1, OC43 and 229E, and thus exhibits high specificity. Compared to the real-time RT-PCR (rRT-PCR) method recommended by the World Health Organization (WHO), the RT-LAMP-VF assay is easy to handle, does not require expensive equipment and can rapidly complete detection within 35 min.

19.
Oncotarget ; 8(13): 21336-21350, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28186992

RESUMEN

Rabies virus (RABV) is a neurotropic virus that causes serious disease in humans and animals worldwide. It has been reported that different RABV strains can result in divergent prognoses in animal model. To identify host factors that affect different infection processes, a kinetic analysis of host proteome alterations in mouse brains infected with different virulent RABV strains was performed using isobaric tags for a relative and absolute quantification (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach, and this analysis identified 147 differentially expressed proteins (DEPs) between the pathogenic challenge virus standard (CVS)-11 strain and the attenuated SRV9 strain. Bioinformatics analyses of these DEPs revealed that autophagy and several pathways associated with autophagy, such as mammalian target of rapamycin (mTOR) signaling, p70S6K signaling, nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress and superoxide radical degradation, were dysregulated. Validation of the proteomic data showed that attenuated SRV9 induced more autophagosome accumulation than CVS-11 in an in vitro model. Our findings provide new insights into the pathogenesis of RABV and encourage further studies on this topic.


Asunto(s)
Virus de la Rabia/patogenicidad , Rabia/patología , Rabia/virología , Virulencia/fisiología , Animales , Autofagia/fisiología , Western Blotting , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Proteoma , Proteómica
20.
Viruses ; 8(12)2016 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-27999340

RESUMEN

West Nile virus (WNV) is prevalent in Africa, Europe, the Middle East, West Asia, and North America, and causes epidemic encephalitis. To date, no effective therapy for WNV infection has been developed; therefore, there is urgent need to find an efficient method to prevent WNV disease. In this study, we prepared and evaluated the protective efficacy of immune serum IgG and pepsin-digested F(ab')2 fragments from horses immunized with the WNV virus-like particles (VLP) expressing the WNV M and E proteins. Immune equine F(ab')2 fragments and immune horse sera efficiently neutralized WNV infection in tissue culture. The passive transfer of equine immune antibodies significantly accelerated the virus clearance in the spleens and brains of WNV infected mice, and reduced mortality. Thus, equine immunoglobulin or equine neutralizing F(ab')2 passive immunotherapy is a potential strategy for the prophylactic or therapeutic treatment of patients infected with WNV.


Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Inmunización Pasiva/métodos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Factores Inmunológicos/administración & dosificación , Fiebre del Nilo Occidental/prevención & control , Virus del Nilo Occidental/inmunología , Animales , Encéfalo/virología , Modelos Animales de Enfermedad , Caballos , Ratones , Bazo/virología , Resultado del Tratamiento , Virus del Nilo Occidental/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...