Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543379

RESUMEN

The response and mechanism of polyimide aerogel under electron irradiations were investigated. The experimental results indicated that electron irradiation could not damage the skeleton polyimide in the aerogel due to its high stability, but could result in a discharge within. The morphology of the discharge shows some dendritic discharge patterns, and the material surrounding the discharge channels was carbonized. The numerical simulation results indicated that the incident electrons, and also large amount induced secondary electrons, would be deposited inhomogeneously within the nano-porous polyimide aerogel. This would result in forming an ultra-high electrical potential of up to about 8.5 × 1010 V/m (which is far higher than the breakdown strength (2 × 108 V/m) of bulk polyimide materials) in a local region. This may be the leading cause of the obvious discharge in the materials. Furthermore, it was found that the actual reason for the discharge is related to the residual gas within the nano-porous structure; namely, the more internal residual gas (as a shorter-time vacuum pumping in the irradiated chamber), the more serious the discharge phenomenon. Correspondingly, the phenomenon may largely consist of both residual-gas discharge and surface flashover due to ultra-high local potentials induced by unevenly deposited charges in the porous aerogel.

2.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080635

RESUMEN

The transport behaviors of proton into nanoporous materials were investigated using different Monte Carlo simulation codes such as GEANT4, Deeper and SRIM. The results indicated that porous structure could enhance the proton scattering effects due to a higher specific surface area and more boundaries. The existence of voids can deepen and widen the proton distribution in the targets due to relatively lower apparent density. Thus, the incident protons would transport deeper and form a wider Bragg peak in the end of the range, as the target materials are in a higher porosity state and/or have a larger pore size. The existence of voids also causes the local inhomogeneity of proton/energy distribution in micro/nano scales. As compared, the commonly used SRIM code can only be used to estimate roughly the incident proton range in nanoporous materials, based on a homogeneous apparent density equivalence rule. Moreover, the estimated errors of the proton range tend to increase with the porosity. The Deeper code (designed for evaluation of radiation effects of nuclear materials) can be used to simulate the transport behaviors of protons or heavy ions in a real porous material with porosity smaller than 52.3% due to its modeling difficulty, while the GEANT4 code has shown advantages in that it is suitable and has been proven to simulate proton transportation in nanoporous materials with porosity in its full range of 0~100%. The GEANT4 simulation results are proved consistent with the experimental data, implying compatibility to deal with ion transportation into homogeneously nanoporous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...