Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(4): ar60, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446618

RESUMEN

It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.


Asunto(s)
Saccharomyces cerevisiae , Transducción de Señal , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación
2.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106135

RESUMEN

The Target of Rapamycin kinase Complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that, in Saccharomyces cerevisiae, nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2, and the phosphatidylinositol 3-phosphate binding protein, Pib2. However, it was unclear if/how Gtr1/2 and Pib2 cooperate to control TORC1. Here we report that this dual regulator system pushes TORC1 into three distinct signaling states: (i) a Gtr1/2 on, Pib2 on, rapid growth state in nutrient replete conditions; (ii) a Gtr1/2 off, Pib2 on, adaptive/slow growth state in poor-quality growth medium; and (iii) a Gtr1/2 off, Pib2 off, quiescent state in starvation conditions. We suggest that other signaling pathways work in a similar way, to drive a multi-level response via a single kinase, but the behavior has been overlooked since most studies follow signaling to a single reporter protein.

3.
Elife ; 112022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047762

RESUMEN

The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the highly conserved small GTPases, Gtr1/2 (RagA/C in humans), and the GTPase activating complex SEAC/GATOR. However, it remains unclear if, and how, other proteins/pathways regulate TORC1 in simple eukaryotes like yeast. Here, we report that the previously unstudied GPCR-like protein, Ait1, binds to TORC1-Gtr1/2 in Saccharomyces cerevisiae and holds TORC1 around the vacuole during log-phase growth. Then, during amino acid starvation, Ait1 inhibits TORC1 via Gtr1/2 using a loop that resembles the RagA/C-binding domain in the human protein SLC38A9. Importantly, Ait1 is only found in the Saccharomycetaceae/codaceae, two closely related families of yeast that have lost the ancient TORC1 regulators Rheb and TSC1/2. Thus, the TORC1 circuit found in the Saccharomycetaceae/codaceae, and likely other simple eukaryotes, has undergone significant rewiring during evolution.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Aminoácidos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Sirolimus/metabolismo
4.
Bio Protoc ; 11(7): e3975, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33889669

RESUMEN

The Target of Rapamycin kinase Complex I (TORC1) is the master regulator of cell growth and metabolism in eukaryotes. In the presence of pro-growth hormones and abundant nutrients, TORC1 is active and drives protein, lipid, and nucleotide synthesis by phosphorylating a wide range of proteins. In contrast, when nitrogen and/or glucose levels fall, TORC1 is inhibited, causing the cell to switch from anabolic to catabolic metabolism, and eventually enter a quiescent state. In the budding yeast Saccharomyces cerevisiae, TORC1 inhibition triggers the movement of TORC1 from its position around the vacuole to a single focus/body on the edge of the vacuolar membrane. This relocalization depends on the activity of numerous key TORC1 regulators and thus analysis of TORC1 localization can be used to follow signaling through the TORC1 pathway. Here we provide a detailed protocol for measuring TORC1 (specifically, Kog1-YFP) relocalization/signaling using fluorescence microscopy. Emphasis is placed on procedures that ensure: (1) TORC1-bodies are identified (and counted) correctly despite their relatively low fluorescence and the accumulation of autofluorescent foci during glucose and nitrogen starvation; (2) Cells are kept in log-phase growth at the start of each experiment so that the dynamics of TORC1-body formation are monitored correctly; (3) The appropriate fluorescent tags are used to avoid examining mislocalized TORC1.

5.
Immunity ; 53(5): 925-933.e4, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33129373

RESUMEN

We conducted a serological study to define correlates of immunity against SARS-CoV-2. Compared to those with mild coronavirus disease 2019 (COVID-19) cases, individuals with severe disease exhibited elevated virus-neutralizing titers and antibodies against the nucleocapsid (N) and the receptor binding domain (RBD) of the spike protein. Age and sex played lesser roles. All cases, including asymptomatic individuals, seroconverted by 2 weeks after PCR confirmation. Spike RBD and S2 and neutralizing antibodies remained detectable through 5-7 months after onset, whereas α-N titers diminished. Testing 5,882 members of the local community revealed only 1 sample with seroreactivity to both RBD and S2 that lacked neutralizing antibodies. This fidelity could not be achieved with either RBD or S2 alone. Thus, inclusion of multiple independent assays improved the accuracy of antibody tests in low-seroprevalence communities and revealed differences in antibody kinetics depending on the antigen. We conclude that neutralizing antibodies are stably produced for at least 5-7 months after SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Inmunidad Humoral , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Arizona/epidemiología , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/diagnóstico , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/sangre , Neumonía Viral/diagnóstico , Prevalencia , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
6.
medRxiv ; 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32817969

RESUMEN

We conducted an extensive serological study to quantify population-level exposure and define correlates of immunity against SARS-CoV-2. We found that relative to mild COVID-19 cases, individuals with severe disease exhibited elevated authentic virus-neutralizing titers and antibody levels against nucleocapsid (N) and the receptor binding domain (RBD) and the S2 region of spike protein. Unlike disease severity, age and sex played lesser roles in serological responses. All cases, including asymptomatic individuals, seroconverted by 2 weeks post-PCR confirmation. RBD- and S2-specific and neutralizing antibody titers remained elevated and stable for at least 2-3 months post-onset, whereas those against N were more variable with rapid declines in many samples. Testing of 5882 self-recruited members of the local community demonstrated that 1.24% of individuals showed antibody reactivity to RBD. However, 18% (13/73) of these putative seropositive samples failed to neutralize authentic SARS-CoV-2 virus. Each of the neutralizing, but only 1 of the non-neutralizing samples, also displayed potent reactivity to S2. Thus, inclusion of multiple independent assays markedly improved the accuracy of antibody tests in low seroprevalence communities and revealed differences in antibody kinetics depending on the viral antigen. In contrast to other reports, we conclude that immunity is durable for at least several months after SARS-CoV-2 infection.

7.
J Biol Chem ; 295(7): 2043-2056, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31848224

RESUMEN

The environmental stress response (ESR) is critical for cell survival. Yeast cells unable to synthesize inositol pyrophosphates (PP-InsPs) are unable to induce the ESR. We recently discovered a diphosphoinositol pentakisphosphate (PP-InsP5) phosphatase in Saccharomyces cerevisiae encoded by SIW14 Yeast strains deleted for SIW14 have increased levels of PP-InsPs. We hypothesized that strains with high inositol pyrophosphate levels will have an increased stress response. We examined the response of the siw14Δ mutant to heat shock, nutrient limitation, osmotic stress, and oxidative treatment using cell growth assays and found increased resistance to each. Transcriptional responses to oxidative and osmotic stresses were assessed using microarray and reverse transcriptase quantitative PCR. The ESR was partially induced in the siw14Δ mutant strain, consistent with the increased stress resistance, and the mutant strain further induced the ESR in response to oxidative and osmotic stresses. The levels of PP-InsPs increased in WT cells under oxidative stress but not under hyperosmotic stress, and they were high and unchanging in the mutant. Phosphatase activity of Siw14 was inhibited by oxidation that was reversible. To determine how altered PP-InsP levels affect the ESR, we performed epistasis experiments with mutations in rpd3 and msn2/4 combined with siw14Δ. We show that mutations in msn2Δ and msn4Δ, but not rpd3, are epistatic to siw14Δ by assessing growth under oxidative stress conditions and expression of CTT1 Msn2-GFP nuclear localization was increased in the siw14Δ. These data support a model in which the modulation of PP-InsPs influence the ESR through general stress response transcription factors Msn2/4.


Asunto(s)
Proteínas de Unión al ADN/genética , Estrés Oxidativo/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Ciclo Celular/genética , Supervivencia Celular/genética , Proteínas de Unión al ADN/metabolismo , Difosfatos/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Inositol/metabolismo , Presión Osmótica/efectos de los fármacos , Oxidación-Reducción , Péptidos Cíclicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
8.
RNA ; 26(1): 10-18, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31601735

RESUMEN

Assessing variations in mRNA stability typically involves inhibiting transcription either globally or in a gene-specific manner. Alternatively, mRNA pulse-labeling strategies offer a means to calculate mRNA stability without inhibiting transcription. However, key stress-responsive cell signaling pathways, which affect mRNA stability, may themselves be perturbed by the approaches used to measure mRNA stability, leading to artifactual results. Here, we have focused on common strategies to measure mRNA half-lives in yeast and determined that commonly used transcription inhibitors thiolutin and 1,10 phenanthroline inhibit TORC1 signaling, PKC signaling, and partially activate HOG signaling. Additionally, 4-thiouracil (4tU), a uracil analog used in mRNA pulse-labeling approaches, modestly induces P-bodies, mRNA-protein granules implicated in storage and decay of nontranslating mRNA. Thiolutin also induces P-bodies, whereas phenanthroline has no effect. Doxycycline, which controls "Tet On/Tet Off" regulatable promoters, shows no impact on the above signaling pathways or P-bodies. In summary, our data argues that broad-acting transcriptional inhibitors are problematic for determining mRNA half-life, particularly if studying the impacts of the TORC1, HOG, or PKC pathway on mRNA stability. Regulatable promoter systems are a preferred approach for individual mRNA half-life studies, with 4tU labeling representing a good approach to global mRNA half-life analysis, despite modestly inducing P-bodies.


Asunto(s)
Estabilidad del ARN/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Semivida , Fenantrolinas/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Pirrolidinonas/farmacología , ARN de Hongos/química , ARN de Hongos/efectos de los fármacos , ARN Mensajero/química , ARN Mensajero/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
9.
SLAS Discov ; 25(1): 21-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513463

RESUMEN

Focal adhesion kinase (FAK) is a promising cancer drug target due to its massive overexpression in multiple solid tumors and its critical role in the integration of signals that control proliferation, invasion, apoptosis, and metastasis. Previous FAK drug discovery and high-throughput screening have exclusively focused on the identification of inhibitors that target the kinase domain of FAK. Because FAK is both a kinase and scaffolding protein, the development of novel screening assays that detect inhibitors of FAK protein-protein interactions remains a critical need. In this report, we describe the development of a high-throughput fluorescence polarization (FP) screening assay that measures the interactions between FAK and paxillin, a focal adhesion-associated protein. We designed a tetramethylrhodamine (TAMRA)-tagged paxillin peptide based on the paxillin LD2 motif that binds to the focal adhesion targeting (FAT) domain with significant dynamic range, specificity, variability, stability, and a Z'-factor suitable for high-throughput screening. In addition, we performed a pilot screen of 1593 compounds using this FP assay, showing its feasibility for high-throughput drug screening. Finally, we identified three compounds that show dose-dependent competition of FAT-paxillin binding. This assay represents the first described high-throughput screening assay for FAK scaffold inhibitors and can accelerate drug discovery efforts for this promising drug target.


Asunto(s)
Descubrimiento de Drogas , Polarización de Fluorescencia , Quinasa 1 de Adhesión Focal/metabolismo , Ensayos Analíticos de Alto Rendimiento , Paxillin/metabolismo , Unión Proteica/efectos de los fármacos , Descubrimiento de Drogas/métodos , Polarización de Fluorescencia/métodos , Quinasa 1 de Adhesión Focal/química , Humanos , Modelos Moleculares , Conformación Molecular , Paxillin/química , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
10.
Nat Commun ; 10(1): 3558, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395866

RESUMEN

The growth rate of a yeast cell is controlled by the target of rapamycin kinase complex I (TORC1) and cAMP-dependent protein kinase (PKA) pathways. To determine how TORC1 and PKA cooperate to regulate cell growth, we performed temporal analysis of gene expression in yeast switched from a non-fermentable substrate, to glucose, in the presence and absence of TORC1 and PKA inhibitors. Quantitative analysis of these data reveals that PKA drives the expression of key cell growth genes during transitions into, and out of, the rapid growth state in glucose, while TORC1 is important for the steady-state expression of the same genes. This circuit design may enable yeast to set an exact growth rate based on the abundance of internal metabolites such as amino acids, via TORC1, but also adapt rapidly to changes in external nutrients, such as glucose, via PKA.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
11.
Mol Biol Cell ; 30(3): 400-410, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485160

RESUMEN

The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomycetales/metabolismo , Modelos Biológicos , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
G3 (Bethesda) ; 6(2): 463-74, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26681516

RESUMEN

The Target of Rapamycin kinase Complex I (TORC1) is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans) to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1) during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay--including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks.


Asunto(s)
Genoma Fúngico , Estudio de Asociación del Genoma Completo , Genómica , Complejos Multiproteicos/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Genómica/métodos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Estrés Fisiológico/genética , Serina-Treonina Quinasas TOR/genética
13.
Elife ; 42015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26439012

RESUMEN

The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the small GTPases, Gtr1/2. However, little is known about the way that other nutrient signals are transmitted to TORC1. Here we report that glucose starvation triggers disassembly of TORC1, and movement of the key TORC1 component Kog1/Raptor to a single body near the edge of the vacuole. These events are driven by Snf1/AMPK-dependent phosphorylation of Kog1 at Ser 491/494 and two nearby prion-like motifs. Kog1-bodies then serve to increase the threshold for TORC1 activation in cells that have been starved for a significant period of time. Together, our data show that Kog1-bodies create hysteresis (memory) in the TORC1 pathway and help ensure that cells remain committed to a quiescent state under suboptimal conditions. We suggest that other protein bodies formed in starvation conditions have a similar function.

14.
Genetics ; 198(2): 773-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085507

RESUMEN

TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases-Gtr1, Gtr2, and Rho1-bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and ribosome synthesis genes and upregulation of 100 PP2A-dependent nitrogen assimilation and amino acid synthesis genes. Here, using bandshift assays and microarray measurements, we show that the TORC1 pathway also populates three other stress/starvation states. First, in glucose starvation conditions, the AMP-activated protein kinase (AMPK/Snf1) and at least one other factor push the TORC1 pathway into an off state, in which Sch9-branch signaling and PP2A-branch signaling are both inhibited. Remarkably, the TORC1 pathway remains in the glucose starvation (PP2A inhibited) state even when cells are simultaneously starved for nitrogen and glucose. Second, in osmotic stress, the MAPK Hog1/p38 drives the TORC1 pathway into a different state, in which Sch9 signaling and PP2A-branch signaling are inhibited, but PP2A-branch signaling can still be activated by nitrogen starvation. Third, in oxidative stress and heat stress, TORC1-Sch9 signaling is blocked while weak PP2A-branch signaling occurs. Together, our data show that the TORC1 pathway acts as an information-processing hub, activating different genes in different conditions to ensure that available energy is allocated to drive growth, amino acid synthesis, or a stress response, depending on the needs of the cell.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/fisiología , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
15.
Cell Rep ; 3(5): 1476-82, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23643537

RESUMEN

Cells respond to stress and starvation by adjusting their growth rate and enacting stress defense programs. In eukaryotes this involves inactivation of TORC1, which in turn triggers downregulation of ribosome and protein synthesis genes and upregulation of stress response genes. Here we report that the highly conserved inositol pyrophosphate (PP-IP) second messengers (including 1-PP-IP5, 5-PP-IP4, and 5-PP-IP5) are also critical regulators of cell growth and the general stress response, acting in parallel with the TORC1 pathway to control the activity of the class I histone deacetylase Rpd3L. In fact, yeast cells that cannot synthesize any of the PP-IPs mount little to no transcriptional response to osmotic, heat, or oxidative stress. Furthermore, PP-IP-dependent regulation of Rpd3L occurs independently of the role individual PP-IPs (such as 5-PP-IP5) play in activating specialized stress/starvation response pathways. Thus, the PP-IP second messengers simultaneously activate and tune the global response to stress and starvation signals.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Fosfatos de Inositol/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Concentración Osmolar , Estrés Oxidativo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sistemas de Mensajero Secundario , Serina-Treonina Quinasas TOR/metabolismo , Temperatura
16.
Mol Cell ; 47(2): 155-7, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22841000

RESUMEN

In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1 complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1 signaling during stress.

17.
Methods Enzymol ; 470: 3-17, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20946804

RESUMEN

This chapter provides a guide to analyzing gene function using DNA microarrays. First, I discuss the design and interpretation of experiments where gene expression levels in mutant and wild-type strains are compared. I then provide a detailed description of the protocols for isolating mRNA from yeast cells, converting the RNA into dye-labeled cDNA, and hybridizing these samples to a microarray. Finally, I discuss methods for washing, scanning, and analyzing the arrays. Emphasis is placed on describing approaches and techniques that help to minimize the artifacts and noise that so often plague microarray data.


Asunto(s)
Genes/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , ADN Complementario/genética , ARN/genética
18.
Nat Genet ; 40(11): 1300-6, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18931682

RESUMEN

Cells regulate gene expression using a complex network of signaling pathways, transcription factors and promoters. To gain insight into the structure and function of these networks, we analyzed gene expression in single- and multiple-mutant strains to build a quantitative model of the Hog1 MAPK-dependent osmotic stress response in budding yeast. Our model reveals that the Hog1 and general stress (Msn2/4) pathways interact, at both the signaling and promoter level, to integrate information and create a context-dependent response. This study lays out a path to identifying and characterizing the role of signal integration and processing in other gene regulatory networks.


Asunto(s)
Redes Reguladoras de Genes , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Activación Enzimática , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/química , Modelos Biológicos , Mutación/genética , Presión Osmótica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
19.
J Mol Biol ; 341(1): 215-26, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15312774

RESUMEN

The four-helical protein Im7 folds via a rapidly formed on-pathway intermediate (k(UI)=3000 s(-1) at pH 7.0, 10 degrees C) that contains three (helices I, II and IV) of the four native alpha-helices. The relatively slow (k(IN)=300 s(-1)) conversion of this intermediate into the native structure is driven by the folding and docking of the six residue helix III onto the developing hydrophobic core. Here, we describe the structural properties of four Im7* variants designed to trap the protein in the intermediate state by disrupting the stabilising interactions formed between helix III and the rest of the protein structure. In two of these variants (I54A and L53AI54A), hydrophobic residues within helix III have been mutated to alanine, whilst in the other two mutants the sequence encompassing the native helix III was replaced by a glycine linker, three (H3G3) or six (H3G6) residues in length. All four variants were shown to be monomeric, as judged by analytical ultracentrifugation, and highly helical as measured by far-UV CD. In addition, all the variants denature co-operatively and have a stability (DeltaG(UF)) and buried hydrophobic surface area (M(UF)) similar to those of the on-pathway kinetic intermediate. Structural characterisation of these variants using 1-anilino-8-napthalene sulphonic acid (ANS) binding, near-UV CD and 1D (1)H NMR demonstrate further that the trapped intermediate ensemble is highly structured with little exposed hydrophobic surface area. Interestingly, however, the structural properties of the variants I54A and L53AI54A differ in detail from those of H3G3 and H3G6. In particular, the single tryptophan residue, located near the end of helix IV, and distant from helix III, is in a distinct environment in the two sets of mutants as judged by fluorescence, near-UV CD and the sensitivity of tryptophan fluorescence to iodide quenching. Overall, the results confirm previous kinetic analysis that demonstrated the hierarchical folding of Im7 via an on-pathway intermediate, and show that this species is a highly helical ensemble with a well-formed hydrophobic core. By contrast with the native state, however, the intermediate ensemble is flexible enough to change in response to mutation, its structural properties being tailored by residues in the sequence encompassing the native helix III.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pliegue de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dicroismo Circular , Cristalografía por Rayos X , Fluorescencia , Mutación , Desnaturalización Proteica , Estructura Terciaria de Proteína , Urea/metabolismo
20.
J Mol Biol ; 337(1): 183-93, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15001361

RESUMEN

The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Estructura Secundaria de Proteína , Proteínas Bacterianas/genética , Hidrógeno/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Mutación , Desnaturalización Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA