Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Allergy ; 5: 1349741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666051

RESUMEN

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion: The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.

2.
Microorganisms ; 12(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257996

RESUMEN

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of global mortality, often associated with high blood levels of LDL cholesterol (LDL-c). Medications like statins and PCSK9 inhibitors, are used to manage LDL-c levels and reduce ASCVD risk. Recent findings connect the gut microbiota and its metabolites to ASCVD development. We showed that statins modulate the gut microbiota including the production of microbial metabolites involved in the regulation of cholesterol metabolism such as short chain fatty acids (SCFAs) and bile acids (BAs). Whether this pleiotropic effect of statins is associated with their antimicrobial properties or it is secondary to the modulation of cholesterol metabolism in the host is unknown. In this observational study, we evaluated whether alirocumab, a PCSK9 inhibitor administered subcutaneously, alters the stool-associated microbiota and the profiles of SCFAs and BAs. METHODS: We used stool and plasma collected from patients enrolled in a single-sequence study using alirocumab. Microbial DNA was extracted from stool, and the bacterial component of the gut microbiota profiled following an amplicon sequencing strategy targeting the V3-V4 region of the 16S rRNA gene. Bile acids and SCFAs were profiled and quantified in stool and plasma using mass spectrometry. RESULTS: Treatment with alirocumab did not alter bacterial alpha (Shannon index, p = 0.74) or beta diversity (PERMANOVA, p = 0.89) in feces. Similarly, circulating levels of SCFAs (mean difference (95% confidence interval (CI)), 8.12 [-7.15-23.36] µM, p = 0.25) and BAs (mean difference (95% CI), 0.04 [-0.11-0.19] log10(nmol mg-1 feces), p = 0.56) were equivalent regardless of PCSK9 inhibition. Alirocumab therapy was associated with increased concentration of BAs in feces (mean difference (95% CI), 0.20 [0.05-0.34] log10(nmol mg-1 feces), p = 0.01). CONCLUSION: In statin-treated patients, the use of alirocumab to inhibit PCSK9 leads to elevated levels of fecal BAs without altering the bacterial population of the gut microbiota. The association of alirocumab with increased fecal BA concentration suggests an additional mechanism for the cholesterol-lowering effect of PCSK9 inhibition.

3.
Physiol Genomics ; 56(1): 48-64, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811721

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina (CSA) and acute coronary syndrome (ACS) compared with healthy controls. Bacterial alpha diversity in stool from patients with ACS or CSA was comparable to healthy controls at both baseline and follow-up visits. Differential abundance analysis identified operational taxonomic units (OTUs) assigned to commensal taxa differentiating patients with ACS from healthy controls at both baseline and follow-up. Patients with CSA and ACS had significantly higher levels of trimethylamine N-oxide compared with healthy controls (CSA: 0.032 ± 0.023 mmol/L, P < 0.01 vs. healthy, and ACS: 0.032 ± 0.023 mmol/L, P = 0.02 vs. healthy, respectively). Patients with ACS had reduced levels of propionate and butyrate (119 ± 4 vs. 139 ± 5.1 µM, P = 0.001, and 14 ± 4.3 vs. 23.5 ± 8.1 µM, P < 0.001, respectively), as well as elevated serum sCD14 (2245 ± 75.1 vs. 1834 ± 45.8 ng/mL, P < 0.0001) and sCD163 levels (457.3 ± 31.8 vs. 326.8 ± 20.7 ng/mL, P = 0.001), compared with healthy controls at baseline. Furthermore, a modified small molecule metabolomic and lipidomic signature was observed in patients with CSA and ACS compared with healthy controls. These findings provide evidence of a link between gut microbiome composition and gut bacterial metabolites with CVD. Future time course studies in patients to observe temporal changes and subsequent associations with gut microbiome composition are required to provide insight into how these are affected by transient changes following an acute coronary event.NEW & NOTEWORTHY The study found discriminative microorganisms differentiating patients with acute coronary syndrome (ACS) from healthy controls. In addition, reduced levels of certain bacterial metabolites and elevated sCD14 and sCD163 were observed in patients with ACS compared with healthy controls. Furthermore, modified small molecule metabolomic and lipidomic signatures were found in both patient groups. Although it is not known whether these differences in profiles are associated with disease development and/or progression, the findings provide exciting options for potential new disease-related mechanism(s) and associated therapeutic target(s).


Asunto(s)
Síndrome Coronario Agudo , Angina Estable , Microbioma Gastrointestinal , Humanos , Receptores de Lipopolisacáridos , Metabolómica , Bacterias
4.
Brain Behav Immun ; 115: 120-130, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806533

RESUMEN

Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.


Asunto(s)
Microbiota , Humanos , Reproducibilidad de los Resultados , Aprendizaje Automático
5.
Am J Physiol Heart Circ Physiol ; 325(6): H1325-H1336, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737730

RESUMEN

Heart failure (HF) is the end stage of most cardiovascular diseases and remains a significant health problem globally. We aimed to assess whether patients with left ventricular ejection fraction ≤45% had alterations in both the gut microbiome profile and production of associated metabolites when compared with a healthy cohort. We also examined the associated inflammatory, metabolomic, and lipidomic profiles of patients with HF. This single center, observational study, recruited 73 patients with HF and 59 healthy volunteers. Blood and stool samples were collected at baseline and 6-mo follow-up, along with anthropometric and clinical data. When compared with healthy controls, patients with HF had reduced gut bacterial alpha diversity at follow-up (P = 0.004) but not at baseline. The stool microbiota of patients with HF was characterized by a depletion of operational taxonomic units representing commensal Clostridia at both baseline and follow-up. Patients with HF also had significantly elevated baseline plasma acetate (P = 0.007), plasma trimethylamine-N-oxide (TMAO) (P = 0.003), serum soluble CD14 (sCD14; P = 0.005), and soluble CD163 (sCD163; P = 0.004) levels compared with healthy controls. Furthermore, patients with HF had a distinct metabolomic and lipidomic profile at baseline when compared with healthy controls. Differences in the composition of the gut microbiome and the levels of associated metabolites were observed in patients with HF when compared with a healthy cohort. This was also associated with an altered metabolomic and lipidomic profile. Our study identifies microorganisms and metabolites that could represent new therapeutic targets and diagnostic tools in the pathogenesis of HF.NEW & NOTEWORTHY We found a reduction in gut bacterial alpha diversity in patients with heart failure (HF) and that the stool microbiota of patients with HF was characterized by depletion of operational taxonomic units representing commensal Clostridia at both baseline and follow-up. Patients with HF also had altered bacterial metabolites and increased inflammatory profiles compared with healthy controls. A distinct metabolomic and lipidomic profile was present in patients with HF at baseline when compared with healthy controls.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Cardíaca , Microbiota , Humanos , Volumen Sistólico , Función Ventricular Izquierda
6.
Cancers (Basel) ; 15(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509236

RESUMEN

Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.

7.
Microorganisms ; 11(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37317100

RESUMEN

The gut microbiome plays a significant role in regulating the host's ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months post-surgery to analyse their microbial taxonomic profiles and associated metabolites in comparison to a healthy control group. There were no significant differences in the gut bacterial diversity between the bariatric patients at baseline and at follow-up or between the bariatric patients and the cohort of healthy controls. However, there were differential abundances in specific bacterial groups between the two cohorts. The bariatric patients were observed to have significant enrichment in Granulicatella at baseline and Streptococcus and Actinomyces at follow-up compared to the healthy controls. Several operational taxonomic units assigned to commensal Clostridia were significantly reduced in the stool of bariatric patients both at baseline and follow-up. When compared to a healthy cohort, the plasma levels of the short chain fatty acid acetate were significantly higher in the bariatric surgery group at baseline. This remained significant when adjusted for age and sex (p = 0.013). The levels of soluble CD14 and CD163 were significantly higher (p = 0.0432 and p = 0.0067, respectively) in the bariatric surgery patients compared to the healthy controls at baseline. The present study demonstrated that there are alterations in the abundance of certain bacterial groups in the gut microbiome of obese patients prior to bariatric surgery compared to healthy individuals, which persist post-sleeve gastrectomy.

8.
Microbiome ; 11(1): 132, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312128

RESUMEN

BACKGROUND: Cystic Fibrosis (CF) is a genetic condition characterized by neutrophilic inflammation and recurrent infection of the airways. How these processes are initiated and perpetuated in CF remains largely unknown. We have demonstrated a link between the intestinal microbiota-related metabolites bile acids (BA) and inflammation in the bronchoalveolar lavage fluid (BALF) from children with stable CF lung disease. To establish if BA indicate early pathological processes in CF lung disease, we combined targeted mass spectrometry and amplicon sequencing-based microbial characterization of 121 BALF specimens collected from 12-month old infants with CF enrolled in the COMBAT-CF study, a multicentre randomized placebo-controlled clinical trial comparing azithromycin versus placebo. We evaluated whether detection of BA in BALF is associated with the establishment of the inflammatory and microbial landscape of early CF lung disease, and whether azithromycin, a motilin agonist that has been demonstrated to reduce aspiration of gastric contents, alters the odds of detecting BA in BALF. We also explored how different prophylactic antibiotics regimens impact the early life BALF microbiota. RESULTS: Detection of BA in BALF was strongly associated with biomarkers of airway inflammation, more exacerbation episodes during the first year of life, increased use of oral antibiotics with prolonged treatment periods, a higher degree of structural lung damage, and distinct microbial profiles. Treatment with azithromycin, a motilin agonist, which has been reported to reduce aspiration of gastric contents, did not reduce the odds of detecting BA in BALF. Culture and molecular methods showed that azithromycin does not alter bacterial load or diversity in BALF. Conversely, penicillin-type prophylaxis reduced the odds of detecting BAs in BALF, which was associated with elevated levels of circulating biomarkers of cholestasis. We also observed that environmental factors such as penicillin-type prophylaxis or BAs detection were linked to distinct early microbial communities of the CF airways, which were associated with different inflammatory landscapes but not with structural lung damage. CONCLUSIONS: Detection of BA in BALF portend early pathological events in CF lung disease. Benefits early in life associated with azithromycin are not linked to its antimicrobial properties. Video Abstract.


Asunto(s)
Fibrosis Quística , Humanos , Lactante , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Azitromicina/uso terapéutico , Ácidos y Sales Biliares , Líquido del Lavado Bronquioalveolar , Fibrosis Quística/tratamiento farmacológico , Inflamación , Motilina , Penicilinas
9.
medRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205501

RESUMEN

Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination: Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.

10.
Antibiotics (Basel) ; 10(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202495

RESUMEN

The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation-pathogen-host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.

11.
Microorganisms ; 8(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172004

RESUMEN

Cystic fibrosis (CF) is a congenital disorder resulting in a multisystemic impairment in ion homeostasis. The subsequent alteration of electrochemical gradients severely compromises the function of the airway epithelia. These functional changes are accompanied by recurrent cycles of inflammation-infection that progressively lead to pulmonary insufficiency. Recent developments have pointed to the existence of a gut-lung axis connection, which may modulate the progression of lung disease. Molecular signals governing the interplay between these two organs are therefore candidate molecules requiring further clinical evaluation as potential biomarkers. We demonstrate a temporal association between bile acid (BA) metabolites and inflammatory markers in bronchoalveolar lavage fluid (BALF) from clinically stable children with CF. By modelling the BALF-associated microbial communities, we demonstrate that profiles enriched in operational taxonomic units assigned to supraglottic taxa and opportunistic pathogens are closely associated with inflammatory biomarkers. Applying regression analyses, we also confirmed a linear link between BA concentration and pathogen abundance in BALF. Analysis of the time series data suggests that the continuous detection of BAs in BALF is linked to differential ecological succession trajectories of the lung microbiota. Our data provide further evidence supporting a role for BAs in the early pathogenesis and progression of CF lung disease.

12.
Hum Mutat ; 41(12): 2087-2093, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32906221

RESUMEN

Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.


Asunto(s)
Síndrome de Ellis-Van Creveld/genética , Dedos/anomalías , Predisposición Genética a la Enfermedad , Defectos de los Tabiques Cardíacos/genética , Proteínas de la Membrana/genética , Mutación/genética , Polidactilia/genética , Dedos del Pie/anomalías , Adulto , Animales , Niño , Preescolar , Síndrome de Ellis-Van Creveld/diagnóstico por imagen , Familia , Femenino , Dedos/diagnóstico por imagen , Defectos de los Tabiques Cardíacos/diagnóstico por imagen , Humanos , Masculino , Ratones , Linaje , Polidactilia/diagnóstico por imagen , Dedos del Pie/diagnóstico por imagen
13.
Diagnostics (Basel) ; 10(5)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384684

RESUMEN

Background: Cystic fibrosis (CF) is a hereditary disorder in which persistent unresolved inflammation and recurrent airway infections play major roles in the initiation and progression of the disease. Little is known about triggering factors modulating the transition to chronic microbial infection and inflammation particularly in young children. Cystic fibrosis respiratory disease starts early in life, with the detection of inflammatory markers and infection evident even before respiratory symptoms arise. Thus, identifying factors that dysregulate immune responsiveness at the earliest stages of the disease will provide novel targets for early therapeutic intervention. Methods: We evaluated the clinical significance of bile acid detection in the bronchoalveolar lavage fluid of clinically stable preschool-aged children diagnosed with CF. Results: We applied an unbiased classification strategy to categorize these specimens based on bile acid profiles. We provide clear associations linking the presence of bile acids in the lungs with alterations in the expression of inflammatory markers. Using multiple regression analysis, we also demonstrate that clustering based on bile acid profiles is a meaningful predictor of the progression of structural lung disease. Conclusions: Altogether, our work has identified a clinically relevant host-derived factor that may participate in shaping early events in the aetiology of CF respiratory disease.

14.
Biology (Basel) ; 8(4)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31601035

RESUMEN

The Arabidopsis thaliana broad-range sugar phosphate phosphatase AtSgpp (NP_565895.1, locus AT2G38740) and the specific DL-glycerol-3-phosphatase AtGpp (NP_568858.1, locus AT5G57440) are members of the wide family of magnesium-dependent acid phosphatases subfamily I with the C1-type cap domain haloacid dehalogenase-like hydrolase proteins (HAD). Although both AtSgpp and AtGpp have a superimporsable α/ß Rossmann core active site, they differ with respect to the loop-5 of the cap domain, accounting for the differences in substrate specificity. Recent functional studies have demonstrated the essential but not sufficient role of the signature sequence within the motif-5 in substrate discrimination. To better understand the mechanism underlying the control of specificity, we explored additional sequence determinants underpinning the divergent evolutionary selection exerted on the substrate affinity of both enzymes. The most evident difference was found in the loop preceding the loop-5 of the cap domain, which is extended in three additional residues in AtSgpp. To determine if the shortening of this loop would constrain the substrate ambiguity of AtSgpp, we deleted these three aminoacids. The kinetic analyses of the resulting mutant protein AtSgpp3Δ (ΔF53, ΔN54, ΔN55) indicate that promiscuity is compromised. AtSgpp3Δ displays highest level of discrimination for D-ribose-5-phosphate compared to the rest of phosphate ester metabolites tested, which may suggest a proper orientation of D-ribose-5-phosphate in the AtSgpp3Δ active site.

15.
Nat Commun ; 10(1): 797, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770808

RESUMEN

FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.


Asunto(s)
Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/genética , Oftalmoplejía/genética , Proteínas de Unión al ARN/genética , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Animales , Células Cultivadas , Exones/genética , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones Transgénicos , Miopatías Estructurales Congénitas/congénito , Miopatías Estructurales Congénitas/metabolismo , Oftalmoplejía/congénito , Oftalmoplejía/metabolismo , Proteínas de Unión al ARN/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
16.
Sci Rep ; 8(1): 10100, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973701

RESUMEN

Dietary fibre positively influences gut microbiome composition, enhancing the metabolism of dietary flavonoids to produce bioactive metabolites. These synergistic activities facilitate the beneficial effects of dietary flavonoids on cardiometabolic health parameters. The aims of this study were to investigate whether isoquercetin (a major dietary flavonoid) and inulin (soluble fibre), either alone or in combination could improve features of the metabolic syndrome. Following a 1 week acclimatization, male C57BL6 mice (6-8 weeks) were randomly assigned to; (i) normal chow diet (n = 10), (ii) high fat (HF) diet (n = 10), (iii) HF diet + 0.05% isoquercetin (n = 10), (iv) HF diet + 5% inulin, or (v) HF diet + 0.05% isoquercetin + 5% inulin (n = 10). Body weight and food intake were measured weekly. At 12 weeks, glucose and insulin tolerance tests were performed, and blood, faecal samples, liver, skeletal muscle and adipose tissue were collected. At 12 weeks, mice on the HF diet had significantly elevated body weights as well as impaired glucose tolerance and insulin sensitivity compared to the normal chow mice. Supplementation with either isoquercetin or inulin had no effect, however mice receiving the combination had attenuated weight gain, improved glucose tolerance and insulin sensitivity, reduced hepatic lipid accumulation, adipocyte hypertrophy, circulating leptin and adipose FGF21 levels, compared to mice receiving the HF diet. Additionally, mice on the combination diet had improvements in the composition and functionality of their gut microbiome as well as production of short chain fatty acids. In conclusion, long-term supplementation with the dietary flavonoid isoquercetin and the soluble fibre inulin can attenuate development of the metabolic syndrome in mice fed a high fat diet. This protective effect appears to be mediated, in part, through beneficial changes to the microbiome.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Inulina/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Quercetina/análogos & derivados , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Sinergismo Farmacológico , Resistencia a la Insulina , Inulina/administración & dosificación , Inulina/farmacología , Hígado/metabolismo , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/microbiología , Síndrome Metabólico/prevención & control , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/uso terapéutico
17.
Microbiome ; 5(1): 95, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28793934

RESUMEN

BACKGROUND: Statins are a class of therapeutics used to regulate serum cholesterol and reduce the risk of heart disease. Although statins are highly effective in removing cholesterol from the blood, their consumption has been linked to potential adverse effects in some individuals. The most common events associated with statin intolerance are myopathy and increased risk of developing type 2 diabetes mellitus. However, the pathological mechanism through which statins cause these adverse effects is not well understood. RESULTS: Using a murine model, we describe for the first time profound changes in the microbial composition of the gut following statin treatment. This remodelling affected the diversity and metabolic profile of the gut microbiota and was associated with reduced production of butyrate. Statins altered both the size and composition of the bile acid pool in the intestine, tentatively explaining the observed gut dysbiosis. As also observed in patients, statin-treated mice trended towards increased fasting blood glucose levels and weight gain compared to controls. Statin treatment affected the hepatic expression of genes involved in lipid and glucose metabolism. Using gene knockout mice, we demonstrated that the observed effects were mediated through pregnane X receptor (PXR). CONCLUSION: This study demonstrates that statin therapy drives a profound remodelling of the gut microbiota, hepatic gene deregulation and metabolic alterations in mice through a PXR-dependent mechanism. Since the demonstrated importance of the intestinal microbial community in host health, this work provides new perspectives to help prevent the statin-associated unintended metabolic effects.


Asunto(s)
Disbiosis/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Intestinos/efectos de los fármacos , Receptores de Esteroides/genética , Animales , Ácidos y Sales Biliares/análisis , Glucemia/análisis , Butiratos/análisis , Diabetes Mellitus Tipo 2/etiología , Disbiosis/fisiopatología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Intestinos/microbiología , Intestinos/fisiopatología , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Receptor X de Pregnano , Aumento de Peso/efectos de los fármacos
18.
Mol Genet Genomic Med ; 5(1): 28-39, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116328

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a heterogeneous bone disorder characterized by recurrent fractures. Although most cases of OI have heterozygous mutations in COL1A1 or COL1A2 and show autosomal dominant inheritance, during the last years there has been an explosion in the number of genes responsible for both recessive and dominant forms of this condition. Herein, we have analyzed a cohort of patients with OI, all offspring of unaffected parents, to determine the spectrum of variants accounting for these cases. Twenty patients had nonrelated parents and were sporadic, and 21 were born to consanguineous relationships. METHODS: Mutation analysis was performed using a next-generation sequencing gene panel, homozygosity mapping, and whole exome sequencing (WES). RESULTS: Patients offspring of nonconsanguineous parents were mostly identified with COL1A1 or COL1A2 heterozygous changes, although there were also a few cases with IFITM5 and WNT1 heterozygous mutations. Only one sporadic patient was a compound heterozygote for two recessive mutations. Patients offspring of consanguineous parents showed homozygous changes in a variety of genes including CRTAP,FKBP10,LEPRE1,PLOD2,PPIB,SERPINF1,TMEM38B, and WNT1. In addition, two patients born to consanguineous parents were found to have de novo COL1A1 heterozygous mutations demonstrating that causative variants in the collagen I structural genes cannot be overlooked in affected children from consanguineous couples. Further to this, WES analysis in probands lacking mutations in OI genes revealed deleterious variants in SCN9A,NTRK1, and SLC2A2, which are associated with congenital indifference to pain (CIP) and Fanconi-Bickel syndrome (FBS). CONCLUSION: This work provides useful information for clinical and genetic diagnosis of OI patients with no positive family history of this disease. Our data also indicate that CIP and FBS are conditions to be considered in the differential diagnosis of OI and suggest a positive role of SCN9A and NTRK1 in bone development.

19.
Oncotarget ; 8(70): 115736-115747, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29383197

RESUMEN

Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts.

20.
Hum Mol Genet ; 24(14): 4126-37, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25908617

RESUMEN

Most patients with Ellis-van Creveld syndrome (EvC) are identified with pathogenic changes in EVC or EVC2, however further genetic heterogeneity has been suggested. In this report we describe pathogenic splicing variants in WDR35, encoding retrograde intraflagellar transport protein 121 (IFT121), in three families with a clinical diagnosis of EvC but having a distinctive phenotype. To understand why WDR35 variants result in EvC, we analysed EVC, EVC2 and Smoothened (SMO) in IFT-A deficient cells. We found that the three proteins failed to localize to Wdr35(-/-) cilia, but not to the cilium of the IFT retrograde motor mutant Dync2h1(-/-), indicating that IFT121 is specifically required for their entry into the ciliary compartment. Furthermore expression of Wdr35 disease cDNAs in Wdr35(-/-) fibroblasts revealed that the newly identified variants lead to Hedgehog signalling defects resembling those of Evc(-/-) and Evc2(-/-) mutants. Together our data indicate that splicing variants in WDR35, and possibly in other IFT-A components, underlie a number of EvC cases by disrupting targeting of both the EvC complex and SMO to cilia.


Asunto(s)
Cilios/metabolismo , Síndrome de Ellis-Van Creveld/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Células Cultivadas , Preescolar , Proteínas del Citoesqueleto , Exoma , Exones , Fibroblastos/metabolismo , Variación Genética , Proteínas Hedgehog , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Linaje , Fenotipo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...