Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Cell Dev Biol ; 12: 1297116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389706

RESUMEN

Introduction: Escape from immunosurveillance is a hallmark of chronic lymphocytic leukemia (CLL) cells. In the protective niche of lymphoid organs, leukemic cells suppress the ability of T lymphocytes to form the immune synapse (IS), thereby hampering T-cell mediated anti-tumoral activities. By binding its cognate receptor PD-1 at the surface of T lymphocytes, the inhibitory ligand PD-L1, which is overexpressed in CLL cells, mediates the T-cell suppressive activities of CLL cells. However, the molecular mechanism underlying PD-L1 overexpression in CLL cells remains unknown. We have previously reported a defective expression of the pro-apoptotic and pro-oxidant adaptor p66Shc in CLL cells, which is causally related to an impairment in intracellular reactive oxygen species (ROS) production and to the activation of the ROS-sensitive transcription factor NF-κB. The fact that PD-L1 expression is regulated by NF-κB suggests a mechanistic relationship between p66Shc deficiency and PD-L1 overexpression in CLL cells. Methods: 62 treatment-naive CLL patients and 43 healthy donors were included in this study. PD-L1 and p66Shc expression was quantified in B cells by flow cytometry and qRT-PCR. IS architecture and local signaling was assessed by flow cytometry and confocal microscopy. CD8+ cell killing activity was assessed by flow cytometry. Results: Here we show that residual p66Shc expression in leukemic cells isolated both from CLL patients and from the CLL mouse model Eµ-TCL1 inversely correlated with PD-L1 expression. We also show that the PD-L1 increase prevented leukemic cells from forming ISs with T lymphocytes. Reconstitution of p66Shc, but not of a ROS-defective mutant, in both CLL cells and the CLL-derived cell line MEC-1, enhanced intracellular ROS and decreased PD-L1 expression. Similar results were obtained following treatment of CLL cells with H2O2 as exogenous source of ROS, that normalized PD-L1 expression and recovered IS formation. Discussion: Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to enhance PD-L1 expression and provides a mechanistic basis for the suppression of T cell-mediated anti-tumoral functions in the immunosuppressive lymphoid niche.

2.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360867

RESUMEN

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Asunto(s)
Interleucina-9 , Leucemia Linfocítica Crónica de Células B , Animales , Humanos , Ratones , Factores Inmunológicos , Interleucina-10/metabolismo , Interleucina-9/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral
3.
Methods Mol Biol ; 2654: 421-436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37106198

RESUMEN

The Retention Using Selective Hooks (RUSH) system allows for the synchronized release of one or more proteins of interest from a donor endomembrane compartment, usually the endoplasmic reticulum, and the subsequent monitoring of their traffic toward acceptor compartments. Here we describe the RUSH system applied to cytotoxic T cells to characterize the biogenesis of lytic granules, using as a proof-of-concept granzyme B trafficking to this specialized compartment.


Asunto(s)
Proteínas , Linfocitos T Citotóxicos , Linfocitos T Citotóxicos/metabolismo , Proteínas/metabolismo , Gránulos Citoplasmáticos/metabolismo
4.
Front Immunol ; 13: 952674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911678

RESUMEN

Human gastric autoimmunity [autoimmune gastritis (AIG)] is characterized by inflammation of the gastric mucosa and parietal cell loss. The gastric parietal cell proton pump H+/K+-adenosine triphosphatase (H+/K+-ATPase) is the major autoantigen in AIG. Our work aimed to investigate the gastric H+/K+-ATPase-specific T helper 17 (Th17) responses in AIG and serum interleukin (IL)-17 cytokine subfamily in AIG patients, in healthy subjects [healthy controls (HCs)], and in patients with iron deficiency anemia (IDA) without AIG. We analyzed the activation of gastric lamina propria mononuclear cells (LPMCs) by H+/K+-ATPase and the IL-17A and IL-17F cytokine production in eight patients with AIG and four HCs. Furthermore, we compared serum levels of IL-17A, IL-17F, IL-21, IL-17E, IL-22, and IL-23 in 43 AIG patients, in 47 HCs, and in 20 IDA patients without AIG. Gastric LPMCs from all AIG patients, but not those from HCs, were activated by H+/K+-ATPase and were able to proliferate and produce high levels of IL-17A and IL-17F. AIG patients have significantly higher serum IL-17A, IL-17F, IL-21, and IL-17E (393.3 ± 410.02 pg/ml, 394.0 ± 378.03 pg/ml, 300.46 ± 303.45 pg/ml, 34.92 ± 32.56 pg/ml, respectively) than those in HCs (222.99 ± 361.24 pg/ml, 217.49 ± 312.1 pg/ml, 147.43 ± 259.17 pg/ml, 8.69 ± 8.98 pg/ml, respectively) and those in IDA patients without AIG (58.06 ± 107.49 pg/ml, 74.26 ± 178.50 pg/ml, 96.86 ± 177.46 pg/ml, 10.64 ± 17.70 pg/ml, respectively). Altogether, our results indicate that IL-17A and IL-17F are produced in vivo in the stomach of AIG patients following activation with H+/K+-ATPase and that serum IL-17A, IL-17F, IL-21, and IL-17E levels are significantly elevated in AIG patients but not in patients without AIG. These data suggest a Th17 signature in AIG and that IL-17A, IL-17F, IL-21, and IL-17E may represent a relevant tool for AIG management.


Asunto(s)
Autoinmunidad , Gastritis , Células Th17 , Adenosina Trifosfatasas , Autoinmunidad/inmunología , Citocinas , Mucosa Gástrica , Gastritis/diagnóstico , Gastritis/inmunología , ATPasa Intercambiadora de Hidrógeno-Potásio , Humanos , Interleucina-17
5.
Front Immunol ; 13: 943344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911720

RESUMEN

Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.


Asunto(s)
Sinapsis Inmunológicas , Receptores de Antígenos de Linfocitos T , Presentación de Antígeno , Bacterias/metabolismo , Evasión Inmune , Factores de Virulencia/metabolismo
6.
Front Oncol ; 12: 877495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847884

RESUMEN

The microenvironment of lymphoid organs is central to the pathogenesis of chronic lymphocytic leukemia (CLL). Within it, tumor cells find a favourable niche to escape immunosurveillance and acquire pro-survival signals. We have previously reported that a CLL-associated defect in the expression of the pro-apoptotic and pro-oxidant adaptor p66Shc leads to enhanced homing to and accumulation of leukemic cells in the lymphoid microenvironment. The p66Shc deficiency-related impairment in intracellular reactive oxygen species (ROS) production in CLL cells is causally associated to the enhanced expression of the chemokine receptors CCR2, CXCR3 and CCR7, that promote leukemic cell homing to both lymphoid and non-lymphoid organs, suggesting the implication of a ROS-modulated transcription factor(s). Here we show that the activity of the ROS-responsive p65 subunit of the transcription factor NF-κB was hampered in the CLL-derived cell line MEC-1 expressing a NF-κB-luciferase reporter following treatment with H2O2. Similar results were obtained when intracellular ROS were generated by expression of p66Shc, but not of a ROS-defective mutant, in MEC-1 cells. NF-κB activation was associated with increased expression of the chemokine receptors CCR2, CXCR3 and CCR7. Reconstitution of p66Shc in CLL cells normalized intracellular ROS and hampered NF-κB activation, which led to a decrease in the expression of these homing receptors. Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to NF-κB hyperactivation and homing receptor overexpression, providing a mechanistic basis for the enhanced ability of these cells to accumulate in the pro-survival lymphoid niche.

7.
Front Oncol ; 12: 835290, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392232

RESUMEN

An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.

8.
Front Immunol ; 13: 887256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479078

RESUMEN

Pernicious anemia (PA) is a megaloblastic anemia consisting of hematological, gastric and immunological alterations. The immunopathogenesis of PA is sustained by both autoantibodies (e.g. intrinsic factor (IFA) antibodies and anti parietal cell (PCA) antibodies and autoreactive T cells specific for IFA and the parietal cell proton pump ATPase. Iron deficient anemia (IDA) is a microcytic anemia and represents the most common cause of anemia worldwide. Our work aimed to investigate serum levels of several interleukins (IL) of the IL-20 cytokine subfamily in patients with PA, with IDA and in healthy subjects (HC). We compared serum levels of IL-19, IL-20, IL-26, IL-28A and IL-29 in 43 patients with PA and autoimmune gastritis, in 20 patients with IDA and no autoimmune gastritis, and in 47 HC. Furthermore, we analyzed the IL-19 cytokine production by gastric lamina propria mononuclear cells (LPMC) in eight patients with PA and four HC. We found that patients with PA have significantly higher serum levels of IL-19 (163.68 ± 75.96 pg/ml) than patients with IDA (35.49 ± 40.97 pg/ml; p<0.001) and healthy subjects (55.68 ± 36.75 pg/ml; p<0.001). Gastric LPMC from all PA patients were able to produce significantly higher levels of IL-19 (420.67 ± 68.14 pg/ml) than HC (53.69 ± 10.92 pg/ml) (p<0.01). Altogether, our results indicate that IL-19 serum levels are significantly increased in patients with PA but not with IDA and that IL-19 is produced in vivo in the stomach of PA patients. These data open a new perspective on PA pathogenesis and suggest that IL-19 may represent a novel important tool for the management of patients with PA.


Asunto(s)
Anemia Perniciosa , Anemia , Gastritis , Anemia Perniciosa/etiología , Autoanticuerpos , Citocinas , Gastritis/complicaciones , Humanos , Interleucinas
9.
Cell Death Differ ; 29(1): 65-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294890

RESUMEN

Ciliogenesis proteins orchestrate vesicular trafficking pathways that regulate immune synapse (IS) assembly in the non-ciliated T-cells. We hypothesized that ciliogenesis-related genes might be disease candidates for common variable immunodeficiency with impaired T-cell function (T-CVID). We identified a heterozygous, predicted pathogenic variant in the ciliogenesis protein CCDC28B present with increased frequency in a large CVID cohort. We show that CCDC28B participates in IS assembly by regulating polarized T-cell antigen receptor (TCR) recycling. This involves the CCDC28B-dependent, FAM21-mediated recruitment of the actin regulator WASH to retromer at early endosomes to promote actin polymerization. The CVID-associated CCDC28BR25W variant failed to interact with FAM21, leading to impaired synaptic TCR recycling. CVID T cells carrying the ccdc28b 211 C > T allele displayed IS defects mapping to this pathway that were corrected by overexpression of the wild-type allele. These results identify a new disease gene in T-CVID and pinpoint CCDC28B as a new player in IS assembly.


Asunto(s)
Inmunodeficiencia Variable Común , Actinas/genética , Inmunodeficiencia Variable Común/genética , Proteínas del Citoesqueleto , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Sinapsis/metabolismo , Linfocitos T
10.
Front Immunol ; 13: 1076167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36700193

RESUMEN

Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (ß2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against ß2GPI, both peripheral and tissue CD4+ ß2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that ß2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated ß2GPI on NETs, and its ability to stimulate CD4+ß2GPI-specific T cells. The aim of this review is to elucidate the role of ß2GPI in the cross-talk between the innate and adaptive immunity in APS.


Asunto(s)
Síndrome Antifosfolípido , Trampas Extracelulares , Trombosis , beta 2 Glicoproteína I , Animales , Femenino , Embarazo , Inmunidad Adaptativa , Anticuerpos Antifosfolípidos , beta 2 Glicoproteína I/metabolismo , Trampas Extracelulares/metabolismo , Trombosis/complicaciones , Inmunidad Innata
11.
Cancers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944921

RESUMEN

Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment. Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summarize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the pathogenesis of chronic lymphocytic leukemia.

12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681881

RESUMEN

Similar to Janus, the two-faced god of Roman mythology, the tumor microenvironment operates two opposing and often conflicting activities, on the one hand fighting against tumor cells, while on the other hand, favoring their proliferation, survival and migration to other sites to establish metastases. In the tumor microenvironment, cytotoxic T cells-the specialized tumor-cell killers-also show this dual nature, operating their tumor-cell directed killing activities until they become exhausted and dysfunctional, a process promoted by cancer cells themselves. Here, we discuss the opposing activities of immune cells populating the tumor microenvironment in both cancer progression and anti-cancer responses, with a focus on cytotoxic T cells and on the molecular mechanisms responsible for the efficient suppression of their killing activities as a paradigm of the power of cancer cells to shape the microenvironment for their own survival and expansion.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/inmunología , Animales , Humanos , Neoplasias/patología , Neoplasias/terapia
13.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34423835

RESUMEN

Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Síndrome de Bardet-Biedl/genética , Polaridad Celular , Endosomas , Humanos , Proteínas Asociadas a Microtúbulos/genética , Sinapsis , Linfocitos T
14.
Front Cell Dev Biol ; 9: 670882, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249926

RESUMEN

Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.

15.
Blood ; 137(16): 2182-2195, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33181836

RESUMEN

The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here, we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Eµ-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified interleukin-9 (IL-9) as the soluble factor, negatively modulated by p66Shc, that is responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Eµ-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to correlate inversely with residual p66Shc in p66Shc-deficient human CLL cells (n = 52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity, and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma and that p66Shc, by regulating IL-9 expression, fine tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.

16.
Cancers (Basel) ; 12(4)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325830

RESUMEN

Neoplastic B cells from chronic lymphocytic leukemia patients (CLL) have a profound deficiency in the expression of p66Shc, an adaptor protein with pro-apoptotic and pro-oxidant activities. This defect results in leukemic B cell resistance to apoptosis and additionally impinges on the balance between chemokine receptors that control B cell homing to secondary lymphoid organs and the sphingosine phosphate receptor S1PR1 that controls their egress therefrom, thereby favoring leukemic B cell accumulation in the pro-survival lymphoid niche. Ablation of the gene encoding p66Shc in the Eµ-TCL1 mouse model of human CLL enhances leukemogenesis and promotes leukemic cell invasiveness in both nodal and extranodal organs, providing in vivo evidence of the pathogenic role of the p66Shc defect in CLL pathogenesis. Here we present an overview of the functions of p66Shc in B lymphocytes, with a specific focus on the multiple mechanisms exploited by p66Shc to control B cell trafficking and the abnormalities in this process caused by p66Shc deficiency in CLL.

17.
Front Immunol ; 11: 471, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265925

RESUMEN

By preserving cell viability and three-dimensional localization, organotypic culture stands out among the newest frontiers of cell culture. It has been successfully employed for the study of diseases among which neoplasias, where tumoral cells take advantage of the surrounding stroma to promote their own proliferation and survival. Organotypic culture acquires major importance in the context of the immune system, whose cells cross-talk in a complex and dynamic fashion to elicit productive responses. However, organotypic culture has been as yet poorly developed for and applied to primary and secondary lymphoid organs. Here we describe in detail the development of a protocol suitable for the efficient cutting of mouse spleen, which overcomes technical difficulties related to the peculiar organ texture, and for optimized organotypic culture of spleen slices. Moreover, we used microscopy, immunofluorescence, flow cytometry, and qRT-PCR to demonstrate that the majority of cells residing in spleen slices remain alive and maintain their original location in the organ architecture for several days after cutting. The development of this protocol represents a significant technical improvement in the study of the lymphoid microenvironment in both physiological and pathological conditions involving the immune system.


Asunto(s)
Técnicas de Cultivo de Órganos , Bazo/anatomía & histología , Animales , Anexina A5/análisis , Quimiocinas/farmacología , Quimiotaxis/efectos de los fármacos , Colorantes , Citocinas/biosíntesis , Citocinas/genética , Citometría de Flujo , Colorantes Fluorescentes , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Microtomía/instrumentación , Microtomía/métodos , Mitógenos/farmacología , ARN/genética , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos , Manejo de Especímenes/métodos , Bazo/química , Bazo/citología , Bazo/fisiología , Coloración y Etiquetado/métodos , Azul de Tripano
18.
Front Cell Dev Biol ; 7: 292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803744

RESUMEN

Ciliated cells exploit a specific transport system, the intraflagellar transport (IFT) system, to ensure the traffic of molecules from the cell body to the cilium. However, it is now clear that IFT activity is not restricted to cilia-related functions. This is strikingly exemplified by the observation that IFT proteins play important roles in cells lacking a primary cilium, such as lymphocytes. Indeed, in T cells the IFT system regulates the polarized transport of endosome-associated T cell antigen receptors and signaling mediators during assembly of the immune synapse, a specialized interface that forms on encounter with a cognate antigen presenting cell and on which T cell activation and effector function crucially depend. Cellular degradation pathways have recently emerged as new extraciliary functions of the IFT system. IFT proteins have been demonstrated to regulate autophagy in ciliated cells through their ability to recruit the autophagy machinery to the base of the cilium. We have now implicated the IFT component IFT20 in another central degradation process that also controls the latest steps in autophagy, namely lysosome function, by regulating the cation-independent mannose-6-phosphate receptor (CI-MPR)-dependent lysosomal targeting of acid hydrolases. This involves the ability of IFT20 to act as an adaptor coupling the CI-MPR to dynein for retrograde transport to the trans-Golgi network. In this short review we will discuss the emerging roles of IFT proteins in cellular degradation pathways.

19.
Oncotarget ; 10(30): 2921-2929, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31080562

RESUMEN

The intrinsic factor is the major humoral autoantigen in pernicious anemia/autoimmune gastritis. Although many studies have examined the autoantibody response to intrinsic factor and H+,K+-ATPase, no information is available on possible pathogenic mechanisms mediated by intrinsic factor - specific gastric T cells. Aim of this study was to investigate intrinsic factor-specific T cells in the gastric mucosa of pernicious anemia patients and define their functional properties. For the first time we provide evidence that gastric mucosa of pernicious anemia patients harbour a high proportion (20%) of autoreactive activated CD4+ T-cell clones that specifically recognize intrinsic factor. Most of these clones (94%) showed a T helper 17 or T helper 1 profile. All intrinsic factor-specific clones produced tumor necrosis factor-α, interleukin-21 and provided substantial help for B-cell immunoglobulin production. Most mucosa-derived intrinsic factor-specific T-cell clones expressed cytotoxicity against target cells. Our results indicate that activation of intrinsic factor-specific T helper 17 and T helper 1 T cells in the gastric mucosa represent a key effector mechanism in pernicious anemia suggesting that the T helper 17/T helper 1 pathway may represent a novel target for the prevention and treatment of the disease.

20.
Cancer Cell Int ; 19: 67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30948927

RESUMEN

BACKGROUND: Low molecular weight protein tyrosine phosphatase (LMW-PTP) is overexpressed in different cancer types and its expression is related to more aggressive disease, reduced survival rate and drug resistance. Morin is a natural polyphenol which negatively modulates, among others, the activity of LMW-PTP, leading to the potentiation of the effects of different antitumoral drugs, representing a potential beneficial treatment against cancer. METHODS: LMW-PTP levels were measured by immunoblot analysis both in CLL cells from patients and in chronic lymphocytic leukemia (CLL)-derived Mec-1 cells. Cell viability was assessed in Mec-1 cells treated with morin alone or in combination with either fludarabine or ibrutinib or following siRNA-mediated LMW-PTP knockdown. Furthermore, the expression levels of VLA-4 and CXCR4 were assessed by both qRT-PCR and flow cytometry and both adhesion to fibronectin-coated plates and migration toward CXCL12 were analyzed in Mec-1 cells treated with morin alone or in combination with fludarabine or ibrutinib. RESULTS: We observed that LMW-PTP is highly expressed in Mec-1 cells as well as in leukemic B lymphocytes purified from CLL patients compared to normal B lymphocytes. Morin treatment strongly decreased LMW-PTP expression levels in Mec-1 cells and potentiated the anticancer properties of both fludarabine and ibrutinib by increasing their apoptotic effects on leukemic cells. Moreover, morin negatively regulates adhesion and CXCL12-dependent migration of Mec-1 cells by affecting VLA-4 integrin expression and CXCR4 receptor recycling. CONCLUSIONS: Morin treatment in CLL-derived Mec-1 cell line synergizes with conventional anticancer drugs currently used in CLL therapy by affecting leukemic cell viability and trafficking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...