Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 7(9)2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505811

RESUMEN

In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.

2.
Cell Host Microbe ; 23(2): 215-228.e4, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29398649

RESUMEN

Gut-associated bacteria produce metabolites that both have a local influence on the intestinal tract and act at a distance on remote organs. In Drosophila, bacteria-derived peptidoglycan (PGN) displays such a dual role. PGN triggers local antimicrobial peptide production by enterocytes; it also activates systemic immune responses in fat-body cells and modulates fly behavior by acting on neurons. How these responses to a single microbiota-derived compound are simultaneously coordinated is not understood. We show here that the PGRP-LB locus generates both cytosolic and secreted PGN-cleaving enzymes. Through genetic analysis, we demonstrate that the cytosolic PGRP-LB isoforms cell-autonomously control the intensity of NF-κB activation in enterocytes, whereas the secreted isoform prevents massive and detrimental gut-derived PGN dissemination throughout the organism. This study explains how Drosophila are able to uncouple the modulation of local versus systemic responses to a single gut-bacteria-derived product by using isoform-specific enzymes.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Drosophila melanogaster/enzimología , Enterocitos/inmunología , Peptidoglicano/metabolismo , Animales , Animales Modificados Genéticamente/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Activación Enzimática/genética , Cuerpo Adiposo/metabolismo , Microbioma Gastrointestinal/inmunología , Inmunidad Innata/inmunología , FN-kappa B/metabolismo , Pectobacterium carotovorum/inmunología , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología
3.
J Innate Immun ; 9(5): 483-492, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28715804

RESUMEN

Peptidoglycan (PGN) detection by PGN recognition proteins (PGRP) is the main trigger of the antibacterial immune response in Drosophila. Depending on the type of immune cell, PGN can be sensed either at the cell membrane by PGRP-LC or inside the cell by PGRP-LE, which plays a role similar to that of Nod2 in mammals. Previous work, mainly in cell cultures, has shown that oligopeptide transporters of the SLC15 family are essential for the delivery of PGN for Nod2 detection inside of the cells, and that this function might be conserved in flies. By generating and analyzing the immune phenotypes of loss-of-function mutations in 3 SLC15 Drosophila family members, we tested their role in mediating PGRP-LE-dependent PGN activation. Our results show that Yin, CG2930, and CG9444 are required neither for PGRP-LE activation by PGN nor for PGN transport from the gut lumen to the insect blood. These data show that, while intracellular PGN detection is an essential step of the antibacterial response in both insects and mammals, the types of PGN transporters and sensors are different in these animals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/inmunología , Lactobacillus plantarum/inmunología , Proteínas de Transporte de Membrana/metabolismo , Pectobacterium carotovorum/inmunología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Técnicas de Inactivación de Genes , Inmunidad Innata , Mamíferos , Proteínas de Transporte de Membrana/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Transportador de Péptidos 1/metabolismo , Peptidoglicano/inmunología , Receptores de Reconocimiento de Patrones/metabolismo
4.
Dev Comp Immunol ; 64: 11-21, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26778296

RESUMEN

All insects are colonized by microorganisms on their exoskeleton, their gut and even in some cases within their own somatic and germ line cells. This microbiota that can represent up to a few percent of the insect biomass may have a pervasive impact on many aspects of insect biology including physiology, nutrient acquisition, ageing, behaviour and resistance to infection. Mainly through ingestion of contaminated food, the mouth-gut axis represents the first and principal access of external bacteria to the host. Soon after ingestion, the feeding insect needs to rapidly and accurately identify the ingested microbes and decide whether to preserve them if beneficial or neutral, or to eliminate them if potentially harmful. We will review here the recent data acquired in Drosophila on the mechanisms that invertebrate enterocytes rely on to detect the presence of bacteria in the gut. We will compare these modes of bacteria sensing to those in other immune competent tissues and try to rationalize differences that may exist. We will also analyse the physiological consequences of bacteria detection not only locally for the gut itself but also for remote tissues. Finally, we will describe the physiological disorders that can occur due to inaccurate bacteria identification by the gut epithelium.


Asunto(s)
Infecciones Bacterianas/inmunología , Drosophila melanogaster/inmunología , Enterocitos/inmunología , Inmunidad Innata , Intestinos/inmunología , Animales , Proteínas Portadoras/metabolismo , Enterocitos/microbiología , Interacciones Huésped-Patógeno , Intestinos/microbiología , Microbiota , FN-kappa B/metabolismo , Peptidoglicano/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
5.
J Innate Immun ; 8(1): 67-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26513145

RESUMEN

In Drosophila, peptidoglycan (PGN) is detected by PGN recognition proteins (PGRPs) that act as pattern recognition receptors. Some PGRPs such as PGRP-LB or PGRP-SCs are able to cleave PGN, therefore reducing the amount of immune elicitors and dampening immune deficiency (IMD) pathway activation. The precise role of PGRP-SC is less well defined because the PGRP-SC genes (PGRP-SC1a, PGRP-SC1b and PGRP-SC2) lie very close on the chromosome and have been studied using a deletion encompassing the three genes. By generating PGRP-SC-specific mutants, we reevaluated the roles of PGRP-LB, PGRP-SC1 and PGRP-SC2, respectively, during immune responses. We showed that these genes are expressed in different gut domains and that they follow distinct transcriptional regulation. Loss-of-function mutant analysis indicates that PGRP-LB is playing a major role in IMD pathway activation and bacterial load regulation in the gut, although PGRP-SCs are expressed at high levels in this organ. We also demonstrated that PGRP-SC2 is the main negative regulator of IMD pathway activation in the fat body. Accordingly, we showed that mutants for either PGRP-LB or PGRP-SC2 displayed a distinct susceptibility to bacteria depending on the infection route. Lastly, we demonstrated that PGRP-SC1 and PGRP-SC2 are required in vivo for full Toll pathway activation by Gram-positive bacteria.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Inmunidad Innata , FN-kappa B/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Animales , Carga Bacteriana/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Cuerpo Adiposo/inmunología , Cuerpo Adiposo/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Bacterias Grampositivas/inmunología , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Especificidad de Órganos , Peptidoglicano/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
6.
EMBO Mol Med ; 7(6): 802-18, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25828351

RESUMEN

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.


Asunto(s)
Síndrome Metabólico/fisiopatología , Mitofagia , Proteínas Nucleares/metabolismo , Animales , Modelos Animales de Enfermedad , Resistencia a la Insulina , Ratones , Proteínas Nucleares/deficiencia , Obesidad , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...